НМУ, Алгебра-1 Листок 7

Модули и векторные пространства.

Задача 1. Является ли \mathbb{Z} -подмодуль в $\mathbb{Z}[x]$, состоящий из всех многочленов с чётным свободным членом **a**) конечно порождённым; **б**) свободным; **в**) отщепимым¹?

Задача 2. Является ли \mathbb{Z} -модуль **a)** \mathbb{Z}^n ; **б)** $(\mathbb{Z}/n\mathbb{Z})^k$ неразложимым? Если модуль разложим, то разложите его в сумму неразложимых.

Задача 3*. а) Пусть $R=\{f\in C_{[0,1]}\mid f(0)=f(1)\},$ и пусть $M=\{f\in C_{[0,1]}\mid f(0)=-f(1)\}.$ Покажите, что M и R суть неразложимые R-модули.

- **б**) Покажите, что $M \oplus M \cong R \oplus R$.
- в) Докажите, что $R=\mathbb{R}[x,y]/(x^2+y^2-1)$ имеет два различных разложения на неразложимые подмодули как R-модуль.

Задача 4. Верно ли, что подмодуль свободного модуля свободен?

Задача 5. Выясните, являются ли линейно зависимыми наборы векторов:

- а) $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$; б) $1, \sin x, \cos x, \dots, \sin(nx), \cos(nx)$; в) $x^{\lambda_1}, \dots, x^{\lambda_n}$ в векторном пространстве функций $f: \mathbb{R} \to \mathbb{R}$. Здесь $n \in \mathbb{Z}_{>0}$ и $\lambda_i \in \mathbb{R}$ различны.
- г) $x, x^2, \ldots, x^{p+1};$ д) $x, x^p, x^{p^2}, \ldots, x^{p^p}$ в векторном пространстве функций $f \colon \mathbb{F}_p \to \mathbb{F}_p;$
- e) $e_1 = (1, 1, 1), e_2 = (1, 1, 2), e_3 = (1, 2, 3)$ B \mathbb{R}^3 ?

Задача 6. Может ли поле из 27 элементов содержать подполе из 9 элементов?

Задача 7. Найдите размерность пространства **a)** многочленов степени не превосходящей n от k переменных;

- **б)** однородных многочленов степени n от k переменных;
- в) многочленов с вещественными коэффициентами степени не больше n, обращающихся в нуль в точке 3-2i;
- Γ) $\mathbb{Q}[x]$, $\mathbb{R}[x]$; $\mathbb{R}[x]$; $\mathbb{R}[t]$, где \mathbb{R} не более чем счётное поле; $\mathbb{R}[t]$ над $\mathbb{Q}[t]$.

Задача 8. Образуют ли базис в пространстве $\mathbb{Q}[x]_{\leqslant n}$ многочленов степени не больше n многочлены **a)** $(x-k)^n;$ **б)** $\binom{x}{k} = \frac{x(x-1)...(x-k+1)}{k!},$ где $0 \leqslant k \leqslant n.$

Задача 9. Приведите пример конечномерного пространства M и трёх таких попарно непересекающихся подпространств U, V, W, что $\dim U + \dim V + \dim W = \dim M$, но $M \ncong U \oplus V \oplus W$.

Задача 10. Пусть $\dim(U+V) = \dim(U\cap V)+1$ для некоторых подпространств $U,V\subseteq W$. Обязательно ли $U\cap V$ равно одному из подпространств U,V, а U+V—другому?

Задача 11. а) Докажите, что для трех подпространств U, V, W векторного пространства выполняется равенство

$$(U+V)\cap (V+W)\cap (W+U)=(U+W)\cap V+(U+V)\cap W.$$

б) Докажите, что

$$(U \cap V) + (V \cap W) + (W \cap U) \subseteq (U + V) \cap (V + W) \cap (W + U),$$

и, если U, V и W конечномерны, разность размерностей в левой и правой частях чётна.

в) Приведите два примера, когда включение из предыдущего пункта строгое.

 $^{^{1}}$ подмодуль N модуля M называется отщепимым, если существует подмодуль N' такой, что $M=N\oplus N'$.

НМУ, Алгебра-1 Листок 7

Задача 12. Обозначим через S(X) множество всех подмножеств множества X. Покажите, что S(X) является векторным пространством над полем \mathbb{F}_2 относительно операций

$$X + Y \coloneqq X \cup Y \setminus (X \cap Y)$$
$$1 \cdot X \coloneqq X$$
$$0 \cdot X \coloneqq \varnothing$$

Если |X| = n, найдите размерность и базис S(X).

Задача 13. Сколько всего имеется в n-мерном векторном пространстве над конечным полем из q элементов **a**) векторов; **б**) упорядоченных наборов из k линейно независимых векторов; **в**) k-мерных векторных подпространств?

Задача 14. Пусть $\binom{n}{k}_q$ — число k-мерных векторных подпространств в \mathbb{F}_q^n . Найдите $\lim_{q \to 1} \binom{n}{k}_q$.