
Russian Math. Surveys 65:3 433–511 c� 2010 RAS(DoM) and LMS

Uspekhi Mat. Nauk 65:3 43–126 DOI 10.1070/RM2010v065n03ABEH004680

To my wonderful teacher Valerii Vasil’evich Kozlov

on the occasion of his 60th birthday

Khintchine’s singular Diophantine

systems and their applications

N. G. Moshchevitin

Abstract. This paper is a survey of classical and recent methods in Dio-

phantine approximation theory and its applications related to Khintchine’s

results on the existence of real numbers admitting extremely good approx-

imations by rational numbers.

Bibliography: 145 titles.

Keywords: multidimensional Diophantine approximations, Khintchine’s

singular systems, continued fractions, best approximations, Diophantine

inequalities, transference theorems, Kozlov problem, Peres–Schlag method.

Contents

1. About the definition of a singular system 435
1.1. Khintchine’s definition 436
1.2. Existence theorems 436
1.3. Singular systems and best approximations 439

2. Subspaces generated by best approximations 442
2.1. Bounds for dimensions 442
2.2. Degeneracy of dimension, R(⇥) = 2 446
2.3. Degeneracy of dimension, R(⇥) = 3 449

3. One-dimensional Diophantine approximation 452
3.1. Continued fractions 452
3.2. The function  

↵

(t) 454
3.3. Two-dimensional lattices 455

4. Singular systems in simultaneous Diophantine approximation 456
4.1. Linear independence of best approximation vectors 457
4.2. Degeneracy of dimension for best simultaneous approximations 459

5. Singularity and Diophantine type 460
5.1. Case m = 1 460
5.2. Case m = 1, n = 3 461
5.3. Case m = 2 463
5.4. Case m = n = 2 464
5.5. Case m > 2 466
5.6. Case m = 3, n = 1 466

This research was supported by the Russian Foundation for Basic Research (grant
no. 09-01-00371a) and the “Leading Scientific Schools” programme (grant no. НШ-691.2008.1).

AMS 2010 Mathematics Subject Classification. Primary 11Jxx.



434 N. G. Moshchevitin

6. Inhomogeneous approximations 468
6.1. One-dimensional setting 468
6.2. Multidimensional theorems 469
6.3. On the proof of Theorem 29 472
6.4. On Theorem 33 474

7. Spaces of lattices 477
7.1. The Davenport–Schmidt metrical theorem 477
7.2. A problem related to successive minima 478

8. Transference theorems 480
8.1. Theorems of Khintchine and Dyson 481
8.2. Results of Jarńık and Apfelbeck 481
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In 1926 Khintchine observed (see [1]) that phenomena which occur in two-
dimensional Diophantine approximation problems di↵er radically from those which
occur in the problem of rational approximations of an irrational number. In par-
ticular, he constructed two-dimensional real vectors which admit ‘extremely good’
rational approximations (in the sense of a linear form as well as in the sense of
simultaneous approximations). The construction in [1] was later generalized to the
case of several linear forms in several integer variables. The coe�cient matrices
of systems of linear forms admitting such extremely good rational approximations
were called singular matrices.

In this paper we give a survey of certain results in Diophantine approximation
theory and its applications related to Khintchine’s singular matrices. This part of
Diophantine approximation theory was in general constructed by Khintchine [2]–[8]
and Jarńık [9]–[15].

The fundamental paper [1] is one of the best (if not the very best) of Khintchine’s
papers in Diophantine approximation theory. Many of his papers were recently
reprinted in Russian in the book [16] of his selected works in number theory. It is
a pity that excellent papers by Jarńık are di�cult to find. For a long time many of
them were forgotten.



Khintchine’s singular Diophantine systems and their applications 435

In the beginning of this survey we discuss the definition of a singular matrix,
existence theorems, and the connection with best Diophantine approximation (§ 1).
In § 2 we give general results dealing with subspaces generated by best Diophantine
approximations. The case of simultaneous approximations is considered separately
(§ 4). In § 5 we consider Jarńık’s problem concerning individual and uniform Dio-
phantine characteristics. In the same section we also give an improvement of a result
of Jarńık. The author’s results on the degeneracy of the dimension of subspaces
generated by best Diophantine approximations are discussed in the paper in several
places. Problems related to inhomogeneous linear Diophantine approximations are
discussed in § 6. In § 7 certain lattice theory problems connected with Diophantine
approximation are considered. § 8 is devoted to classical and new results related
to the transference principle. All results known to the author about the Hausdor↵
dimension of sets of singular matrices are gathered in § 9.

Here we should note that Diophantine approximations are important in certain
problems in classical mechanics related to the problem of ‘small denominators’,
for example, in the theory of perturbations of quasi-periodic motions (see [17]).
In particular, it turned out that one can apply Khintchine’s singular matrices to
construct systems with ‘rapid divergence of trajectories’. That was done by Kozlov
and Moshchevitin in [18]. Moreover, Diophantine analysis turned out to be the main
tool for the solution of the problem of oscillation of the integral of a quasi-periodic
function. This problem was settled by Kozlov in 1978. We discuss it in § 11.

In the Appendix (§ 13) we discuss a series of related results. First of all, we
consider the results obtained by a recent method due to Peres and Schlag [19]. Then
we discuss the main notions and results in the theory of winning sets constructed
by Schmidt [20].

Some of the problems considered in the present paper (as well as some other
interesting topics in Diophantine approximation) are discussed in the wonderful
survey by Waldschmidt [21]. There are classical books by Koksma [22], Cassels
[23], and Schmidt [24] devoted to Diophantine approximation theory.

In addition to the topics mentioned above we consider also some other prob-
lems; for example, Diophantine approximations with positive integers (§ 10) and
the existence of matrices with extremely singular Diophantine properties (§ 12).

The author would like to thank all the participants of the number theory seminars
and special courses at Moscow State University and the Independent University of
Moscow for many useful discussions. He is especially grateful to I. P. Rochev and
O. N. German, and would also like to thank V.A. Bykovskii for improving the initial
version of the paper.

1. About the definition of a singular system

Everywhere below, x = (x
1

, . . . , x
m

) denotes an integer vector. By k · k we
denote the distance to the nearest integer. We consider a matrix

⇥ =

0

@

✓1
1

. . . ✓m

1

. . . . . . . . . . . . .
✓1

n

. . . ✓m

n

1

A (1)
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with real numbers ✓i

j

(1 6 j 6 n, 1 6 i 6 m), and the corresponding system of
linear forms

L(x) = L
⇥

(x) = {L
j

(x), 1 6 j 6 n}, L
j

(x) =
m

X

i=1

✓i

j

x
i

. (2)

Denote by t⇥ the matrix transpose of ⇥.
From the Minkowski convex body theorem it follows that for any matrix ⇥ and

any real t > 1 the system of Diophantine inequalities

max
16j6n

kL
j

(x)k 6 1
t

, 0 < max
16i6m

|x
i

| 6 tn/m,

has an integer solution x 2 Zm.

1.1. Khintchine’s definition. First of all we formulate the original definition of
a singular system as given by Khintchine in [7]. A matrix ⇥ (or in the original
terminology of Khintchine a set of real numbers ✓i

j

with 1 6 i 6 m and 1 6 j 6 n)
is called a singular system if for any " > 0 there exists a t

0

= t
0

(") such that for
t > t

0

the system of Diophantine inequalities

max
16j6n

kL
j

(x)k 6 1
t

, 0 < max
16i6m

|x
i

| < "tn/m,

has an integer solution x 2 Zm.
Here we note that in Khintchine’s terminology a matrix ⇥ which is not singular

is said to be regular (he used the term regular system of real numbers ✓i

j

).
Therefore, a matrix ⇥ is regular if there exists a µ(⇥) > 0 such that for some

sequence of positive numbers t
⌫

tending to infinity there are no non-zero integer
points in Rn satisfying the inequalities

max
16j6n

kL
j

(x)k 6 1
t
⌫

, 0 < max
16i6m

|x
i

| 6 µ(⇥)tn/m

⌫

.

This can be said in other words. A matrix ⇥ is regular if there exists a µ(⇥) > 0
such that for some sequence of positive numbers t

⌫

tending to infinity there are no
non-zero integer points in Rn satisfying the inequalities

max
16j6n

kL
j

(x)k 6 µ(⇥)
t
⌫

, 0 < max
16i6m

|x
i

| 6 µ(⇥)tn/m

⌫

. (3)

This is the way the definition of a regular system was formulated by Davenport
and Schmidt [25].

In the present paper we mainly use matrix terminology. Nevertheless, it will
sometimes be convenient to use the notion of a singular system of real numbers.

1.2. Existence theorems. It is easy to see that in the case n = m = 1 there exist
no irrational numbers ✓1

1

which form a singular system (in the sense of Khintchine’s
definition). We make some additional comments on this in § 3.1. Khintchine (see [1])
was the first to prove the existence of singular matrices in the cases m = 2, n = 1
and m = 1, n = 2. Here we state the original results ([1], Hilfssatz I, Satz 2; see
also [23], Chap.V, Theorem XIV).
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Theorem 1. Suppose that  (t) is a continuous function of a real argument t and
is decreasing to zero as t ! +1. Then there exist two real numbers ✓1 and ✓2

which are linearly independent together with 1 over Z and such that for su�ciently
large t there exists an integer solution (x

1

, x
2

) 2 Z2 of the Diophantine system

kx
1

✓1 + x
2

✓2k <  (t), 0 < max
j=1,2

|x
j

| < t.

Theorem 2. Let  (t) be a continuous function of a real argument t and suppose
that it is decreasing to zero as t ! +1. Suppose that the function t (t) increases
monotonically to infinity as t ! +1. Then there exist two real numbers ✓

1

and ✓
2

which are linearly independent together with 1 over Z and such that for su�ciently
large t there exists an integer solution x of the Diophantine system

max
j=1,2

kx✓
j

k <  (t), 0 < x < t.

Thus, in the case m = 2, n = 1 Theorem 1 ensures the existence of singular
systems for a given function  (t) with an arbitrary rate of convergence to zero. In
the case m = 1, n = 2 Theorem 2 states the existence of singular systems if the
corresponding function t 7! t (t) increases monotonically to infinity.

For this reason the following definition is convenient. Suppose that a func-
tion  (t) decreases to zero continuously and that  (t) = o(t�m/n) as t ! +1.
We define a matrix ⇥ (or a system of mn real numbers) to be  -singular if for
su�ciently large t the Diophantine system

max
16j6n

kL
j

(x)k 6  (t), 0 < max
16i6m

|x
i

| < t,

has an integer solution x 2 Zm.
Theorem 1 above admits the following direct multidimensional generalization, in

a stronger form.

Theorem 3. Let n be a positive integer and m an integer > 2. Suppose that the
continuous function  (t) of a real argument t decreases monotonically to zero as
t ! +1. Consider the set M ⇢ Rmn of all matrices ⇥ such that

• the numbers ✓i

j

with 1 6 i 6 m, 1 6 j 6 n are linearly independent together
with 1 over Z,

• the matrix ⇥ is  -singular.
Then for any open set G ⇢ Rmn the intersection M \ G has the cardinality of the
continuum.

Here we note that the situation in the case m = 1 is di↵erent. Suppose that
m = 1 and let ⇥ = {✓

1

, . . . , ✓
n

} be some collection of real numbers. We denote
by dimZ⇥ the maximal number of elements among ✓

1

, . . . , ✓
n

, 1 that are linearly
independent over Z. We can now state a generalization of Theorem 2.

Theorem 4. Let m = 1 and n > 2.
(i) Let  (t) be a positive continuous function of a real variable t and assume

that it decreases to zero as t ! +1. Suppose that

lim
t!1

 (t)t = +1. (4)
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Consider the set M ⇢ Rn of collections ⇥ = {✓
j

, 1 6 j 6 n} of real numbers such
that
• dimZ⇥ = n + 1,
• the system ⇥ is  -singular.

Then for any open set G ⇢ Rn the intersection M \ G has the cardinality of the
continuum.

(ii) Let n > 2 and suppose that the positive function  (t) satisfies the condition

lim sup
t!+1

 (t)t < +1. (5)

Then dimZ⇥ 6 2 if the system ⇥ = {✓
1

, . . . , ✓
n

} is  -singular. Moreover, if

lim sup
t!+1

 (t)t = 0, (6)

then dimZ⇥ = 1, that is, all the numbers ✓
j

with 1 6 j 6 n are rational.

One can find Theorem 2 and part (i) of Theorem 4 in Jarńık’s paper [14]. A par-
ticular case was considered by Chabauty and Lutz [26]. We note that Jarńık proves
a somewhat stronger result. Under the conditions of Theorem 3 he proves the
existence of matrices ⇥ consisting of algebraically independent real numbers ✓i

j

.
The statement (ii) in Theorem 4 obviously follows from Corollary 5 in § 4.1 below

(p. 458), which was also proved by Jarńık (see [9], [14]). Under the condition (6)
the result follows immediately from Corollary 1 in § 4.1. Thus, we see that in the
case m = 1, n > 2 non-trivial singular systems do not exist under the condition (5).

Lesca [27] obtained a somewhat more precise result than Theorem 4.

Theorem 5 (J.Lesca [27]). Let m = 1 and n > 2, and let  (t) be a positive
continuous function of t decreasing to zero as t ! +1. Suppose that

lim sup
t!1

 (t)t = +1.

Then the set of all  -singular systems ⇥ = {✓
j

, 1 6 j 6 n} consisting of alge-
braically independent real numbers, intersected with any open set G ⇢ Rn, has the
cardinality of the continuum.

Theorem 5 should be compared with Jarńık’s formula (53) and with Theorem 17.
Here we note that Lesca [28] has a p-adic version of Theorem 3.

We cite an existence theorem proved by Apfelbeck.

Theorem 6 (Apfelbeck [29]). Let n, m > 2. Suppose that  (t) is a positive contin-
uous function  (t) such that the function t 7! t (t) is decreasing. Then there exists
a  -singular matrix ⇥ which consists of numbers ✓i

j

linearly independent together
with 1 and such that the matrix t⇥ is also  -singular.

We comment on the use of the word ‘singular’ in the definition of singular sys-
tems. The explanation is that for any dimensions m and n the set of all singular
matrices is a set of zero Lebesgue measure, as was proved by Khintchine himself
(see [7]). This result follows easily from the Borel–Cantelli lemma. One can find
a complete proof in [23] (Chap. V, § 7). A stronger result was obtained by Daven-
port and Schmidt [25]. We shall discuss this result in § 7.1.
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1.3. Singular systems and best approximations. For an integer vector x =
(x

1

, . . . , x
m

) 2 Zm we consider the quantities

M(x) = max
16i6m

|x
i

|, ⇣(x) = max
16j6n

kL
j

(x)k.

An integer vector x = (x
1

, . . . , x
m

) is called a best approximation for the matrix ⇥
if

⇣(x) = min
x

0
⇣(x0), (7)

where the minimum is taken over all non-zero integer points x0 = (x0
1

, . . . , x0
m

) 2 Zm

such that
0 < M(x0) 6 M(x). (8)

For a best approximation x satisfying this definition the point �x will also be a best
approximation. However, for the pair of best approximations ±x the values M(x)
and ⇣(x) are the same and do not depend on the sign ± .

We note that in general it may happen that for two integer points x
1

6= ±x
2

with the same value M(x
1

) = M(x
2

) 6= 0 one has

max
16j6n

kL
j

(x
1

)k = max
16j6n

kL
j

(x
2

)k. (9)

But in the case when all the numbers ✓i

j

(1 6 i 6 m, 1 6 j 6 n) are linearly
independent together with 1 over Z, the equality (9) is not possible. Hence, in the
case when all the numbers ✓i

j

(1 6 i 6 m, 1 6 j 6 n) are linearly independent
together with 1 over Z, all the best approximations can be arranged in an infinite
sequence

±x
1

,±x
2

, . . . ,±x
⌫

,±x
⌫+1

, . . .

in such a way that

M(x
1

) < M(x
2

) < · · · < M(x
⌫

) < M(x
⌫+1

) < · · · , (10)
⇣(x

1

) > ⇣(x
2

) > · · · > ⇣(x
⌫

) > ⇣(x
⌫+1

) > · · · . (11)

For brevity we use the notation

M
⌫

= M(x
⌫

), ⇣
⌫

= ⇣(x
⌫

).

In some places below we need to work with best approximations for matrices ⇥
which do not satisfy the linear independence condition. In such a case it may not
be possible to determine the sequence of points x

⌫

uniquely. Nevertheless, the
sequences of values M(x

⌫

), ⇣(x
⌫

) (see (10), (11)) are uniquely determined. (But
it may happen that there are several di↵erent pairs of integer points ±x

⌫

with the
same values of M(x

⌫

) and ⇣(x
⌫

); also, the sequences M(x
⌫

) and ⇣(x
⌫

) may be
finite in general.)

The discussion above leads to the following definition. We define a matrix ⇥
to be good if the sequences (10), (11) are infinite and for su�ciently large ⌫ the
vectors x

⌫

are uniquely determined up to the sign.
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We should make one more remark. Let ek (1 6 k 6 n) be unit vectors with
the kth coordinate of ek equal to 1 and all other coordinates 0. We consider the
collection

✓1, . . . , ✓m, e1, . . . , en (12)

of m+n vectors in Rn, where ✓j denotes the jth column of the matrix ⇥. It is easy
to see that the sequences of best approximations (10), (11) are infinite if and only if
the collection (12) consists of vectors linearly independent over Z. In this situation
Jarńık defines the matrix ⇥ to be non-degenerate. Here we use this definition also.
If the matrix ⇥ is not non-degenerate, then the sequences (10) and (11) are finite
and for the last value of ⌫ we have ⇣

⌫

= 0.
In the case when m or n is equal to 1 the matrix ⇥ becomes a single column

or a single row and can be identified with a tuple of m or n real numbers, and
we can regard dimZ⇥ as a characteristic of this tuple of real numbers. This is
also the sense of the notation dimZ⇥ in Theorem 4. We shall use this notation
below in the same sense. In particular, we see that dimZ⇥ is defined only in the
cases m = 1 and n = 1. For example, in the case m = 1 the non-degeneracy of ⇥
means that among the numbers ✓

j

= ✓1
j

there exists at least one irrational number,
that is, dimZ⇥ > 2. For n = 1 the non-degeneracy of ⇥ means that the numbers
1, ✓1

1

, . . . , ✓m

1

are linearly independent over Z, that is, dimZ⇥ = m + 1.
We need one more characteristic of linear independence. Given a matrix ⇥, we

define DIMZ⇥ to be the maximal number of vectors linearly independent over Z
in the collection (12). Note that for n = 1

DIMZ⇥ = dimZ⇥, (13)

and for m = 1 the dimension DIMZ⇥ can take only the two values n and n + 1. In
this case instead of the equality (13) we clearly have

DIMZ
t⇥ = dimZ

t⇥. (14)

Obviously, for any matrix ⇥

n 6 DIMZ⇥ 6 n + m. (15)

A matrix ⇥ is non-degenerate if and only if

DIMZ⇥ = m + n.

We make a comment concerning the di↵erence between the notions of a good
matrix and a non-degenerate matrix. For m = 1 or n = 1 non-degeneracy of
a matrix forces the matrix to be good. In other cases this is not so. Here is an
example.

Let ⇠ be an irrational number, let m = n = 2, and let ⇥ be

⇥ =
✓

✓1
1

✓2
1

✓1
2

✓2
2

◆

=
✓

⇠ 0
0 ⇠

◆

.

Then
DIMZ⇥ = DIMZ

t⇥ = 4,
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and the matrix is non-degenerate. But it is easy to see that for each value of ⌫ the
corresponding vectors

(±q
⌫

,±q
⌫

), (±q
⌫

, 0), (0,±q
⌫

),

where q
⌫

is the denominator of a (continued fraction) convergent to ⇠, have the
same values of M

⌫

and ⇣
⌫

. Of course, in this example the collection 1, ✓i

j

with
1 6 i, j 6 2 consists of numbers linearly dependent over Z, since some ✓i

j

are equal
to zero.

Let us continue our study of best approximations. By y
⌫

= (y
1,⌫

, . . . , y
n,⌫

) 2 Zn

we denote an integer vector with coordinates y
j,⌫

such that

kL
j

(x
⌫

)k = |L
j

(x
⌫

) + y
j,⌫

|.

We use the notation

z
⌫

= (x
1,⌫

, . . . , x
m,⌫

, y
1,⌫

, . . . , y
n,⌫

) 2 Zd, d = m + n,

for the ‘extended’ best approximation vector.
A vector

z = (x
1

, . . . , x
m

, y
1

, . . . , y
n

)

is an ‘extended’ best approximation vector if there are no integer points inside the
parallelepiped

n

z0 = (x0
1

, . . . , x0
m

, y0
1

, . . . , y0
n

) : M(x0) 6 M(x),

max
16j6n

|L
j

(x0) + y0
j

| 6 max
16j6n

|L
j

(x) + y
j

|

o

(16)

besides the point 0. Moreover, there are no integer points inside the parallelepiped
n

z0 = (x0
1

, . . . , x0
m

, y0
1

, . . . , y0
n

) : M(x0) 6 M(x
⌫+1

),

max
16j6n

|L
j

(x) + y0
j

| 6 ⇣
⌫

= max
16j6n

|L
j

(x
⌫

) + y
j,⌫

|

o

(17)

besides 0. From this we deduce by Minkowski’s convex body theorem that

⇣n

⌫

Mm

⌫+1

6 1. (18)

Moreover, we note two simple properties.
1. Each extended best approximation vector z

⌫

is a primitive vector, that is,

g.c.d.(x
1,⌫

, . . . , x
m,⌫

, y
1,⌫

, . . . , y
n,⌫

) = 1.

2. Every pair of two consecutive best approximation vectors z
⌫

, z
⌫+1

can be
extended to a basis of the integer lattice Zd.

The property of singularity for the matrix ⇥ can easily be reformulated in terms
of best approximations.
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Proposition 1. Suppose that a continuous and monotone function  (t) satisfies
the condition  (t) = o(t�m/n) for t ! +1. A non-degenerate matrix ⇥ is
 -singular if and only if for su�ciently large ⌫

⇣
⌫

6  (M
⌫+1

). (19)

The connection between the singularity of ⇥ and best approximations does not
appear in Khintchine’s papers in an explicit way. This connection was implicitly
used in Jarńık’s papers and in Cassels’ book [23]. In particular, Jarńık (see [9], [11],
[13], [14]) uses a piecewise constant function

 
⇥

(t) = min
x2Zm

: 0<M(x)6t

max
16j6n

kL
j

(x)k, (20)

and in [23] the similar function

⌘(⇢) = min
x2Zm

: 0<|x1|2+···+|xm|26⇢2
max

16j6n

kL
j

(x)k

appears in several proofs (Chap. V, §§ 6, 7).
The jumps of these functions in fact determine the best approximations (in

Jarńık’s papers in the sup-norm as in the present paper, but in the book [23] in the
Euclidean norm).

We note that a matrix ⇥ is non-degenerate if and only if the value  
⇥

(t) is never
zero for t > 1. A non-degenerate matrix ⇥ is  -singular if and only if for su�ciently
large t Jarńık’s function (20) satisfies

 
⇥

(t) 6  (t).

2. Subspaces generated by best approximations

In this section we discuss properties of linear subspaces of Rd where the best
approximation vectors z

⌫

lie.

2.1. Bounds for dimensions. By the dimension dim⇤ of a lattice ⇤ we mean
the dimension of the minimal linear subspace span⇤ ⇢ Rd containing ⇤. Consider
a subspace ⇡ of Rd. The intersection ⇡ \ Zd is a lattice ⇤ = ⇤(⇡) (possibly contain-
ing just the zero point 0). We define a subspace ⇡ ✓ Rd to be completely rational
if

dim⇡ = dim⇤(⇡).

For a given linear subspace ⇡ we define H(⇡) as the maximal completely rational
subspace which is contained in ⇡, and we define R(⇡) as the minimal completely
rational linear subspace which contains ⇡. So

H(⇡) ✓ ⇡ ✓ R(⇡).

We now define vectors

✓̄
i

= (✓1
i

, . . . , ✓m

i

, 0, . . . , 0, 1, 0, . . . , 0), 1 6 i 6 n

(here 1 is at the (m + i)th place).
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Consider in the space Rd with d = m + n the linear subspace N (⇥) generated
by the vectors ✓̄

1

, . . . , ✓̄
n

, and its orthogonal complement L (⇥). Obviously,

dim N (⇥) = n, dim L (⇥) = m.

We now consider the subspaces

H
⇥

= H(L (⇥)), R
⇥

= R(L (⇥)).

For them,
DIMZ⇥+ dim H

⇥

= d, DIMZ
t⇥ = dim R

⇥

. (21)

In particular, from the first equality in (21) we see that a matrix ⇥ is non-degenerate
if and only if H

⇥

= {0}.
The following proposition is well known. In fact, it was proved by Jarńık in [13].

The case m = 1 can be found in Lagarias’ paper [30]. The case m = 2, n = 1 was
treated by Davenport and Schmidt [31] (see also the author’s papers [32], [33]).

For a good matrix ⇥ we define

R(⇥) = min{r : there exists a lattice ⇤ ✓ Zn+m, dim⇤ = r, and ⌫
0

2 N
such that z

⌫

2 ⇤ for all ⌫ > ⌫
0

}.

Let ⇤
⇥

be the lattice in the definition of R(⇥) and put ⇡
⇥

= span⇤
⇥

. Let

K(⇥) = dim
�

⇡
⇥

\L (⇥)
�

> 1. (22)

The last inequality follows from the fact that there are best approximation vectors
in the subspace ⇡

⇥

that are arbitrarily close to the subspace L (⇥).

Theorem 7. For a good matrix ⇥ the following statements are valid :
(i) 2 6 R(⇥) 6 DIMZ t⇥;
(ii) if m = 1, then R(⇥) = DIMZ t⇥ = dimZ⇥;
(iii) if m > n, then R(⇥) > 3;
(iv) if K(⇥) = 1 and R(⇥) > 2, then m < n.

We make some remarks about the proofs of the statements in Theorem 7.
1. The lower bound in (i) follows from the linear independence of the vec-

tors z
⌫

, z
⌫+1

.
To prove the upper bound in (i) and the statement (ii), we introduce some

notation which will be useful not only in this proof but also below.
The distance between sets A ,B ⇢ Rd is denoted by dist(A ,B). (It is con-

venient to take the distance in the sup-norm.) For a lattice ⇤ ⇢ Rd such that
Zd

\ span⇤ = ⇤ and dim⇤ < d, the distance between Zd

\ ⇤ and the subspace
span⇤ is greater than zero. Denote it by

⇢(⇤) = dist(Zd

\ ⇤, span⇤) > 0. (23)

For a completely rational linear subspace ⇡ ⇢ Rd we let

⇢(⇡) = ⇢(⇡ \ Zd). (24)



444 N. G. Moshchevitin

2. We now comment about the proof of the upper bound in the statement (i).
Since ⇢(R

⇥

) > 0 but dist(z
⌫

,R
⇥

) 6 dist
�

z
⌫

,L (✓)
�

! 0 as ⌫ ! +1, we see
that z

⌫

2 R
⇥

\ Zn+m for large enough ⌫, and the proof is complete.
3. Here we comment about the proof of the statement (ii). Note that if m = 1,

then the subspace L (⇥) has dimension 1, and d = n + 1.
Suppose that dimZ⇥ = r. Then the vector ⇥ belongs to a certain completely

rational linear subspace ⇡ ⇢ Rn+1 of dimension r (in fact this subspace is R
⇥

), but
does not belong to any completely rational subspace of a lower dimension.

The bound R(⇥) 6 r follows from the upper bound in (i).
Suppose that R(⇥) < r. But dist

�

z
⌫

,L (✓)
�

! 0 as ⌫ ! +1, so it follows
that ⇥ belongs to a completely rational subspace of dimension < r, which is not
possible.

Hence R(⇥) = r, and (ii) is proved.
4. To prove (iii) one should take into account the inequality (18), which in the

case m > n implies that

⇣
⌫

M
⌫+1

! 0, ⌫ ! +1. (25)

In the case R(⇥) = 2 we see that the two-dimensional subspace ⇡
⇥

= span⇤
⇥

(here ⇤
⇥

is the lattice in the definition of R(⇥)) contains the one-dimensional
subspace ⇡

⇥

\ L (⇥), which does not contain non-zero points of the lattice ⇤
⇥

(since H
⇥

= {0}). Now (25) contradicts Proposition 2 in § 3.3 (the norm | · |• is
induced by the sup-norm in Rd).

5. To prove the inequality (iv) we again use the inequality (18), which for m > n
implies that

⇣
⌫

M
⌫+1

6 1 8 ⌫.

Then we consider the completely rational subspace ⇡
⇥

and the one-dimensional
subspace `

⇥

= ⇡
⇥

\L (⇥). The latter does not belong to any proper completely
rational subspace of ⇡

⇥

. We use Proposition 3 in § 4.1 (p. 459) to see that

⇣
⌫

M
⌫+1

! +1, ⌫ ! +1.

This is a contradiction.
We note that in item 4 above we have proved a slightly more general statement:

in addition to the statement (iii) of Theorem 7 we get the following result.

Theorem 8. Let 2 6 m 6 n, and let ⇥ be a good matrix that is  -singular, with
some function such that  (t) = o(t�1) as t ! +1. Then R(⇥) > 3.

Under the conditions of Theorem 8, we suppose in the case m = n > 2 that the
matrix ⇥ is singular in the sense of Khintchine’s original definition. In the case
n > m we require something more.

Remark. In any case when R(⇥) > 3, there exist infinitely many values of ⌫ such
that the three consecutive best approximation vectors z

⌫�1

, z
⌫

, z
⌫+1

are linearly
independent.

As will be shown in the next subsection, the subspace ⇡
⇥

may really have small
dimension R(⇥). Nevertheless, such degeneracy of the dimension can occur only
under strong restrictions on the elements of the matrix ⇥.
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Theorem 9. Let ⇥ be a good matrix, and let R(⇥) 6 n + K(⇥) � 1. Then the
matrix ⇥ consists of elements ✓i

j

satisfying some algebraic relation of degree 6
min(m, R(⇥)�K(⇥) + 1).

Theorem 9 is almost obvious. The subspace L (⇥) is generated by the vectors

✓1 =

0

B

B

B

B

B

B

B

B

B

B

@

�1
0
...
0
✓1
1

...
✓1

n

1

C

C

C

C

C

C

C

C

C

C

A

, ✓2 =

0

B

B

B

B

B

B

B

B

B

B

@

0
�1
...
0
✓2
1

...
✓2

n

1

C

C

C

C

C

C

C

C

C

C

A

, . . . , ✓m =

0

B

B

B

B

B

B

B

B

B

B

@

0
0
...
�1
✓m

1

...
✓m

n

1

C

C

C

C

C

C

C

C

C

C

A

.

One can take a basis in ⇡
⇥

consisting of R(⇥) integer vectors of the form

uj =

0

B

@

uj

1

...
uj

m+n

1

C

A

, 1 6 j 6 R(⇥).

Since dim span
�

⇡
⇥

[L (⇥)
�

= R(⇥)+m�K(⇥), we see from (22) that the vectors
✓1, . . . , ✓m,u1, . . . ,uR(⇥) are linearly dependent over R. Moreover, the subcollection

✓1, . . . , ✓m,u1, . . . ,ur, r = R(⇥)�K(⇥) + 1, 1 6 r 6 n, (26)

also consists of vectors linearly dependent over R. From the conditions of the
theorem it follows that m+R(⇥)�K(⇥)+1 6 m+n. Consider the matrix of size
(m+n)⇥

�

m+R(⇥)�K(⇥)+1
�

consisting of the coordinates of the vectors (26).
All the maximal-order minors of this matrix are equal to zero.

Since the vectors u1, . . . ,ur are linearly independent, there is a collection of
indices

1 6 i
1

< · · · < i
r

6 d

such that

det

0

@

u1

i1
. . . ur

i1

. . . . . . . . . . . . . .
u1

ir
. . . ur

ir

1

A

6= 0.

The collection of r indices 1 6 i
1

< · · · < i
r

6 d can be extended to a collection
of r + m indices of the form

1, 2, . . . ,m, j
1

, . . . , j
r

, m < j
1

< · · · < j
r

6 d.

Thus,

det

0

B

B

B

B

B

B

@

�1 . . . 0 u1

1

. . . ur

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . �1 u1

m

. . . ur

m

✓1
j1

. . . ✓m

j1
u1

j1
. . . ur

j1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
✓1

jr
. . . ✓m

jr
u1

jr
. . . ur

jr

1

C

C

C

C

C

C

A

= 0.
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From the columns uj of the determinant we can extract a non-zero minor which
is di↵erent from the bottom right-hand minor. Therefore, the condition that
this determinant is equal to zero gives a non-trivial algebraic relation of degree
6 min(m, r) on the elements of the matrix ⇥.

From the statement (i) in Theorem 7 and from the second equality in (21) we
immediately deduce the following corollary.

Corollary 1. Let ⇥ be a good matrix. If K(⇥) = m, then ⇡
⇥

= R
⇥

and R(⇥) =
DIMZ t⇥.

From Theorems 7 and 9 and the inequality (22) we obtain the following.

Corollary 2. Let ⇥ be a good matrix. Then :
(i) if the elements of ⇥ are algebraically independent, then R(⇥) > n + 1;
(ii) if (m, n) 6= (1, 1) and the elements of ⇥ are algebraically independent, then

R(⇥) > 3.

For the case m = n we deduce the following assertions from Theorem 7 (state-
ment (iv)) and Theorem 9.

Corollary 3. (i) Let ⇥ be a good matrix. If m = n > 1 and R(⇥) 6 n + 1, then
the elements of ⇥ are algebraically dependent.

(ii) Let ⇥ be a good matrix. If m = n > 1 and K(⇥) = 1, then R(⇥) = 2 and
the elements of ⇥ are algebraically dependent.

Corollary 4. Let m = n = 2. Let ⇥ be a good matrix. Then :
(i) if K(⇥) = 1, then R(⇥) = 2;
(ii) if K(⇥) = 2, then ⇡

⇥

◆ L (⇥) and R(⇥) = DIMZ t⇥.
In particular, if DIMZ t⇥ = 4, then either R(⇥) = 2 or R(⇥) = 4.

2.2. Degeneracy of dimension, R(⇥) = 2. Let ⇠ 2 (0, 1) be an irrational
number and let p

⌫

/q
⌫

with ⌫ = 1, 2, 3, . . . be the convergents to ⇠. Let m > 2
and n > 3, and suppose that the elements ✓i

j

with 1 6 i 6 2 and 1 6 j 6 n satisfy
the relations

✓2
j

= �⇠✓1
j

, 1 6 j 6 n. (27)

We consider the matrix

⇥ =

0

@

✓1
1

✓2
1

✓3
1

. . . ✓m

1

. . . . . . . . . . . . . . . . . . . . . . .
✓1

n

✓2
n

✓3
n

. . . ✓m

n

1

A =

0

@

✓1
1

�⇠✓1
1

✓3
1

. . . ✓m

1

. . . . . . . . . . . . . . . . . . . . . . . . . .
✓1

n

�⇠✓1
n

✓3
n

. . . ✓m

n

1

A (28)

(when m = 2 it has two columns). Note that by an appropriate choice of the
numbers ✓1

j

, j = 1, 2, . . . , n, we can guarantee that all the elements of this matrix
are linearly independent together with 1 over Z. Then

DIMZ⇥ = DIMZ
t⇥ = m + n,

and the matrix is good. At the same time we see from (27) that the elements of the
matrix (28) are algebraically dependent (so Theorem 10 below does not contradict
Theorem 9 above).
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Theorem 10. Let 2 6 m < n. Then for almost all collections of n(m � 1) real
numbers (✓i

1

, ✓i

2

, . . . , ✓i

n

) with i = 1, 3, 4, . . . ,m such that 1/3 < ✓1
1

, ✓1
2

, . . . , ✓1
n�1

<
2/3 < ✓1

n

< 1 and ✓i

j

2 (0, 1) for 3 6 i 6 m and 1 6 j 6 n the sequence of
best approximation vectors for the matrix (28) di↵ers from the sequence of integer
vectors

(p
⌫

, q
⌫

, 0, . . . , 0
| {z }

m+n�2

), ⌫ = 1, 2, 3, . . . ,

by at most finitely many elements. Hence R(⇥) = 2.

Corollary. In the case m > 2 and n > m there exist matrices ⇥ consisting of
elements linearly independent together with 1 over Z and such that R(⇥) = 2.

Proof of Theorem 10. We note that

max
16j6n

kp
⌫

✓1
j

+ q
⌫

✓2
j

k = max
16j6n

k(p
⌫

� q
⌫

⇠)✓1
j

k = |(p
⌫

� q
⌫

⇠)✓1
n

|.

On the other hand, from the theory of continued fractions (see § 3.1, formulae (42)
and (43)) we see that

max
16j6n

kp
⌫

✓1
j

+ q
⌫

✓2
j

k = |(p
⌫

� q
⌫

⇠)✓1
n

| <
1

q
⌫+1

. (29)

To establish that the vector (p
⌫

, q
⌫

) is a best approximation vector for the
matrix (28) and that the vector (p

⌫+1

, q
⌫+1

) is precisely the next best approxi-
mation vector for (28), it is su�cient to show that

min
(x1,...,xm;y1,...,yn)

max
16j6n

|(x
1

�⇠x
2

)✓1
j

+x
3

✓3
j

+· · ·+x
m

✓m

j

+y
j

| > |(p
⌫

�q
⌫

⇠)✓1
n

|, (30)

where the minimum is taken over all integer points (x
1

, . . . , x
m

; y
1

, . . . , y
n

) such
that

0 6= max
16i6m

|x
i

| 6 q
⌫+1

, max
16j6n

|y
j

| 6 1 + |x
1

� ⇠x
2

| + |x
3

| + · · · + |x
m

|, (31)

and

(x
1

, . . . , x
m

; y
1

, . . . , y
n

) 6= ±

�

p
⌫

, q
⌫

, 0, . . . , 0
| {z }

m+n�2

�

,±
�

p
⌫+1

, q
⌫+1

, 0, . . . , 0
| {z }

m+n�2

�

.

If x
3

= · · · = x
m

= y
1

= · · · = y
n

= 0, then nothing depends on the properties
of the numbers ✓i

j

, and

max
16j6n

|(x
1

� ⇠x
2

)✓1
j

+ x
3

✓3
j

+ · · · + x
m

✓m

j

+ y
j

| = |(x
1

� ⇠x
2

)✓1
n

| > |(p
⌫

� q
⌫

⇠)✓1
n

|,

since p
⌫

< q
⌫

and since the convergents to a number correspond to the best
one-dimensional approximations (see § 3.1).

The condition (30) is valid if for any integer vector (x
1

, . . . , x
m

, y
1

, . . . , y
n

) under
consideration satisfying (31) and such that

|x
3

| + · · · + |x
m

| + |y
1

| + · · · + |y
n

| 6= 0 (32)
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one has
(✓1

j

, ✓3
j

, . . . , ✓m

j

) /2 J
⌫

(x
1

, x
2

, . . . , x
m

; y
j

)

for 1 6 j 6 n, where

J
⌫

(x
1

, x
2

, . . . , x
m

; y
j

) =
⇢

(✓1
j

, ✓3
j

, . . . , ✓m

j

) 2 [0, 1]m�1 :

|(x
1

� ⇠x
2

)✓1
j

+ x
3

✓3
j

+ · · · + x
m

✓m

j

+ y
j

| 6 1
q
⌫+1

�

.

For the Lebesgue measure of this set we have an upper estimate of the form

µ
�

J
⌫

(x
1

, x
2

, . . . , x
m

; y
j

)
�

6 m3/2

q
⌫+1

(|x
1

� ⇠x
2

| + |x
3

| + · · · + |x
m

|)
. (33)

Moreover, in the case x
3

= · · · = x
m

= 0 we see from (32) that at least one y
j

is
not equal to 0. Thus, if |x

1

� ⇠x
2

| < 1/2, then (30) is satisfied automatically. So
we can assume that

|x
1

� ⇠x
2

| > 1
2

.

Therefore, for the condition (30) to hold it su�ces that
0

@

✓1
1

✓3
1

. . . ✓m

1

. . . . . . . . . . . . . . . . . .
✓1

n

✓3
n

. . . ✓m

n

1

A /2 J
⌫

= J (1)

⌫

[ J (2)

⌫

,

where

J (1)

⌫

=
[

1

[

2

J
⌫

�

x
1

, x
2

, 0, . . . , 0
| {z }

m�2

; y
1

�

⇥ · · ·⇥ J
⌫

�

x
1

, x
2

, 0, . . . , 0
| {z }

m�2

; y
n

�

,

J (2)

⌫

=
[

3

[

4

[

5

J
⌫

(x
1

, x
2

, x
3

, . . . , x
m

; y
1

)⇥ · · ·⇥ J
⌫

(x
1

, x
2

, x
3

, . . . , x
m

; y
n

),

with the unions
[

i

, i = 1, . . . , 5, taken over the following sets:

[

1

: over (x
1

, x
2

) such that 0 < max{|x
1

|, |x
2

|} 6 q
⌫+1

, |x
1

� ⇠x
2

| > 1
2

;
[

2

: over (y
1

, . . . , y
n

) such that max
16j6n

|y
j

| 6 4|x
1

� ⇠x
2

|;
[

3

: over (x
1

, x
2

) such that 0 < max{|x
1

|, |x
2

|} 6 q
⌫+1

;
[

4

: over (x
3

, . . . , x
m

) such that 0 < max
36i6m

|x
i

| 6 q
⌫+1

;

[

5

: over (y
1

, . . . , y
n

) such that max
16j6n

|y
j

| 6 2
✓

|x
1

� ⇠x
2

| +
m

X

i=3

|x
i

|

◆

.

It follows from (33) that

µ
�

J (1)

⌫

�

⌧ q2�n

⌫+1

, µ(J (2)

⌫

) ⌧ qm�n

⌫+1

, µ(J
⌫

) ⌧ qm�n

⌫+1

6 q�1

⌫+1

.

The series
P1
⌫=1

1/q
⌫

converges. Hence, the Borel–Cantelli lemma gives us The-
orem 10.
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To finish this subsection we note that in the case m = n = 2 the author knows
no example of a good matrix ⇥ with the elements linearly independent together
with 1 over Z and such that R(⇥) = 2.

2.3. Degeneracy of dimension, R(⇥) = 3. The results of the previous sub-
section show to what extent the lower bound in the statement (i) of Theorem 7 in
the case m > 2 is sharp. We show below that the lower bound of the statement (iii)
of Theorem 7 is also sharp. For this purpose we shall use singular matrices.

First of all, we consider a very special case.
Suppose that ⇠1, ⇠2 2 (0, 1/2) are linearly independent together with 1 over Z.

Let (x
1,⌫

, x
2,⌫

, x
3,⌫

) be the ‘extended’ best approximation vectors for the matrix
(⇠1, ⇠2). (Here we use notation which does not correspond to the beginning of the
present paper but is convenient here.) Then

kx
1,⌫

⇠1 + x
2,⌫

⇠2k = |x
1,⌫

⇠1 + x
2,⌫

⇠2 + x
3,⌫

| < M�2

⌫+1

,

where we can assume that
M
⌫

= max
i=1,2,3

|x
i

|.

Let
✓1

j

= ⇠1✓3
j

, ✓2
j

= ⇠2✓3
j

, 1 6 j 6 n,

and consider the matrix
0

@

✓1
1

✓2
1

✓3
1

. . . . . . . . . . . . .
✓1

n

✓2
n

✓3
n

1

A =

0

@

⇠1✓3
1

⇠2✓3
1

✓3
1

. . . . . . . . . . . . . . . . .
⇠1✓3

n

⇠2✓3
n

✓3
n

1

A . (34)

Theorem 11. Suppose that the series

1
X

⌫=1

M3

⌫+1

kx
1,⌫

⇠1 + x
2,⌫

⇠2kn (35)

converges. Then for almost all tuples (✓3
1

, . . . , ✓3
n

) 2 Rn with 0 < ✓3
2

, . . . , ✓3
n

< 1/2 <
✓3
1

< 1 the sequence of best approximations for the matrix ⇥ defined in (34) di↵ers
from the sequence

�

x
1,⌫

, x
2,⌫

, x
3,⌫

, 0, . . . , 0
| {z }

n

�

by at most finitely many elements.

The proof of Theorem 11 is quite similar to the proof of Theorem 10. One should
ensure the inequality

min
x1,x2,x3;y1,...,yn

max
16j6n

|✓3
j

(x
1

⇠1 + x
2

⇠2 + x
3

) + y
j

| > |x
1,⌫

⇠1 + x
2,⌫

⇠2 + x
3,⌫

|

for almost all (✓3
1

, . . . , ✓3
n

) 2 Rn, where the minimum is taken over all integer vectors
(x

1

, x
2

, x
3

, y
1

, . . . , y
n

) di↵erent from the vectors

±

�

x
1,⌫

, x
2,⌫

, x
3,⌫

, 0, . . . , 0
| {z }

n

�

, ±

�

x
1,⌫+1

, x
2,⌫+1

, x
3,⌫+1

, 0, . . . , 0
| {z }

n

�
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and such that
0 6= max

i=1,2,3

|x
i

| 6 M
⌫+1

,

Of course, one should distinguish the cases y = 0 and y 6= 0.
Since the series

P

⌫

M�1

⌫

converges (this follows from the exponential rate of
growth of M

⌫

; see, for example, the lemma in [34]), we get the following statement.

Corollary. Let n > 2. Then R(⇥) = 3 for the matrix (34) for almost all tuples
(✓3

1

, . . . , ✓3
n

) 2 Rn.

We now prove a generalization of a recent result of Moshchevitin and German
in [34]. This result itself is a generalization of the author’s result in [35]. We
note that in [34] some other results related to the existence of singular systems of
a special kind (with n = 1) were announced, whose complete proofs have not yet
been published. One of these will be stated below in § 12 (Theorem 69).

Let m⇤ > m. For a matrix ⇥ of the form (1) we consider an ‘extended’ matrix

⇥⇤ =

0

@

✓1
1

. . . ✓m

1

✓m+1

1

. . . ✓m

⇤

1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

✓1
n

. . . ✓m

n

✓m+1

n

. . . ✓m

⇤

n

1

A

with real elements. We have enlarged the matrix ⇥ by adding n(m⇤
� m) ele-

ments. The collection of additional elements can be identified with a vector ⇥ =
(✓m+1

1

, . . . , ✓m

⇤

n

) in Rn(m

⇤�m). The following statement is a direct generalization of
a result in [34]. It develops ideas in [35] and [33].

Theorem 12. Let

z
⌫

= (x
1,⌫

, . . . , x
m,⌫

, y
1,⌫

, . . . , y
n,⌫

) 2 Zm+n, ⌫ = 1, 2, 3, . . . ,

be all the best approximations for the matrix ⇥. Let M
⌫

and ⇣
⌫

be the elements of
the sequences (10) and (11). Consider the integer vectors

z⇤
⌫

=
�

x
1,⌫

, . . . , x
m,⌫

, 0, . . . , 0
| {z }

m

⇤�m

, y
1,⌫

, . . . , y
n,⌫

�

2 Zm

⇤
+n. (36)

Assume that the series

1
X

⌫=1

M
max(m+n,m

⇤
)

⌫+1

(log M
⌫+1

)�(m
⇤
,m+n)⇣n

⌫

, �(a, b) =

(

1, a = b,

0, a 6= b,
(37)

converges. Then for almost all ‘additional’ vectors ⇥ 2 Rn(m

⇤�m) (in the sense of
Lebesgue measure) the sequence of best approximations for the matrix ⇥⇤ di↵ers
from the sequence z⇤

⌫

by at most finitely many elements.

From Theorem 12 and Proposition 1 we deduce the following statement.

Corollary. Let m > 2 and let ⇥ be a  -singular matrix. Suppose that the series

1
X

⌫=1

Mmax(m+n,m

⇤
)

⌫

(log M
⌫

)�(m
⇤
,m+n)( (M

⌫

))n (38)
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converges. Then for almost all ‘additional’ vectors ⇥ 2 Rn(m

⇤�m) the sequence of
best approximations for the matrix ⇥⇤ di↵ers from the sequence (36) by at most
finitely many elements.

Let n = 1, m = 2, and  (t) = t�m

⇤�2. By taking ✓1
j

, ✓2
j

as in Theorem 1
the previous corollary transforms into the following statement in the papers [35]
and [33].

Theorem 13. Let n = 1. Then for any m > 2 there exists a vector ⇥ with alge-
braically independent elements ✓i (1 6 i 6 m) such that all the best approximation
vectors z

⌫

with su�ciently large ⌫ belong to some three-dimensional subspace, and
so R(⇥) = 3.

By taking arbitrary n and m > 3 Theorems 11 and 12 lead to the following
result.

Theorem 14. Let m > 3. Then for any n there exists a matrix ⇥ consisting
of elements ✓i

j

which are linearly independent together with 1 over Z and such
that all the best approximation vectors z

⌫

with ⌫ su�ciently large belong to some
three-dimensional subspace, and so R(⇥) = 3.

Proof of Theorem12. One can assume that ✓i

j

2 [0, 1] for all i, j.
We must prove that under the conditions of our theorem for a given matrix ⇥

and for almost all ‘additional’ vectors ⇥ there exists a ⌫
0

such that for all ⌫ > ⌫
0

min max
16j6n

�

�

�

�

X

16i6m

⇤

x
i

✓i

j

+ y
j

�

�

�

�

> ⇣
⌫

, (39)

where the minimum is taken over all integer points

z = (x
1

, . . . , x
m

⇤ , y
1,⌫

, . . . , y
n

) 2 Zm

⇤
+n

\ {0}

such that
max

16j6m

⇤
|x

j

| 6 M
⌫+1

, z 6= z⇤
⌫

.

The condition (39) is satisfied if for any vector

(x
1

, . . . , x
m

⇤ , y
1

, . . . , y
n

) 2 Zm

⇤
+n

\ {0,±z
⌫

,±z
⌫+1

}

with max
16i6m

⇤
|x

i

| 6 M
⌫+1

there exists a j with 1 6 j 6 n such that

x
m+1

✓m+1

j

+ · · · + x
m

⇤✓m

⇤

j

/2 J
⌫

(y
j

, x
1

, . . . , x
m

), (40)

where

J
⌫

(y
j

, x
1

, . . . , x
m

) = (�y
j

�x
1

✓1
j

� · · ·�x
m

✓m

j

� ⇣
⌫

,�y
j

�x
1

✓1
j

� · · ·�x
m

✓m

j

+ ⇣
⌫

).
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The condition (40) means that the distance from the point (✓m+1

j

, . . . , ✓m

⇤

j

) 2
[0, 1]m

⇤�m to the subspace

{(u
m+1

, . . . , u
m

⇤) 2 Rm

⇤�m : x
m+1

u
m+1

+· · ·+x
m

⇤u
m

⇤ = �y
j

�x
1

✓1
j

�· · ·�x
m

✓m

j

}

is not less than ⇣
⌫

· (x2

m+1

+ · · · + x2

m

⇤)�1/2.
Let

⌦
⌫

(z) = ⌦
⌫

(x,y) =
�

⇥ 2 [0, 1]n(m

⇤�m) :

x
m+1

✓m+1

j

+ · · · + x
m

⇤✓m

⇤

j

/2 J
⌫

(y
j

, x
1

, . . . , x
m

), 1 6 j 6 n
 

and let
⌦
⌫

=
[

y

[

x

⌦
⌫

(x,y).

In the last formula the unions are taken over all integer points in the sets
n

y : max
16j6n

|y
j

| 6 (m⇤ + 1)M
⌫+1

o

,
n

x : 0 < max
16i6m

⇤
|x

i

| 6 M
⌫+1

o

.

By the Borel–Cantelli lemma our theorem is true if
X

⌫>⌫0
µ(⌦

⌫

) ! 0, ⌫
0

! +1. (41)

But

µ(⌦
⌫

) ⌧ ⇣n

⌫

Mn

⌫+1

X

x1,...,xm

X

xm+1,...,xm⇤

1
(max

m6i6m

⇤
|x

i

|)n

⌧ ⇣n

⌫

Mn+m

⌫+1

X

16t6M⌫+1

tm
⇤�m�n�1

⌧ ⇣n

⌫

M
max(m+n,m

⇤
)

⌫+1

(log M
⌫+1

)�(m
⇤
,m+n).

Now (41) follows from the convergence of the series (37), and the theorem is proved.

3. One-dimensional Diophantine approximation

Here we discuss the simplest case m = n = 1. In this case we deal with the
problem of approximating one number ↵ = ✓1

1

by rational fractions.

3.1. Continued fractions. It is a well-known fact that the problem of investi-
gating the best approximations to one real number admits a solution in terms of
continued fractions (see [36]). Recall that for a representation of a real number ↵
as a continued fraction

↵ = [a
0

; a
1

, a
2

, . . . , a
t

, . . . ] = a
0

+
1

a
1

+
1

a
2

+ · · · +
1

a
t

+ . . .

,
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a
0

2 Z, a
t

2 N, t = 1, 2, 3, . . . (this fraction is finite or infinite according to whether
↵ is rational or not), the convergents are defined to be the rational fractions

p
⌫

q
⌫

= [a
0

; a
1

, a
2

, . . . , a
⌫

] = a
0

+
1

a
1

+
1

a
2

+ · · · +
1
a
⌫

.

The best approximations defined in § 1.3 (more precisely, the ‘extended’ vectors
z
⌫

2 Z2) coincide with the best approximations of the second kind (in the termi-
nology of the book [36]). The following statement is valid (see [36], Theorem 16).

Theorem 15. All the best approximations z
⌫

are of the form z
⌫

= (q
⌫

, p
⌫

), where
q
⌫

and p
⌫

are the denominator and the numerator of some convergent to ↵.

We note that if ↵ 6= p
⌫

/q
⌫

(for example, if ↵ is irrational), then the following
inequalities are valid (see [36], Theorems 9 and 13):

1
q
⌫

(q
⌫

+ q
⌫+1

)
<

�

�

�

�

↵�
p
⌫

q
⌫

�

�

�

�

<
1

q
⌫

q
⌫+1

. (42)

In particular,

kq
⌫

↵k >
1

2q
⌫+1

. (43)

In terms of the notation in § 1.3 (for ↵ 2 (0, 1)), we have

⇣
⌫

> 1
2M

⌫+1

8 ⌫ 2 N. (44)

Here we note that for the di↵erence in (42) there is a simple and elegant equality
�

�

�

�

↵�
p
⌫

q
⌫

�

�

�

�

=
1

q2

⌫

(↵
⌫+1

+ ↵⇤
⌫

)
, (45)

where
↵
⌫+1

= [a
⌫+1

; a
⌫+2

, a
⌫+3

, . . . ], ↵⇤
⌫

= [0; a
⌫

, . . . , a
1

].

This equality makes possible a very detailed investigation of one-dimensional Dio-
phantine approximation. For example, it allows us to reduce the study of the
Lagrange spectrum

L =
n

� 2 R : there is an ↵ 2 R such that � =
⇣

lim inf
q!+1

qkq↵k
⌘�1

o

to certain problems relating to doubly infinite sequences [37]. There are many
papers devoted to the Lagrange spectrum L (see the bibliography in the book [37]
and the wonderful survey [38]). Apparently, no multidimensional generalization of
the equality (45) is known.

Suppose that an irrational number ↵ forms a singular system with m = n = 1.
Then from Proposition 1 we see that ⇣

⌫

< 1/(2M
⌫+1

) for su�ciently large ⌫.
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This contradicts (44). Hence, there are no irrational numbers ✓ which are singular
systems.

One can rewrite the equality (45) in the form

q
⌫

kq
⌫

↵k =
1

↵
⌫+1

+ ↵⇤
⌫

.

Here we recall a similar equality

q
⌫+1

kq
⌫

↵k =
1

1 +
1

↵
⌫+2

↵⇤⇤
⌫+1

, (46)

where
↵⇤⇤
⌫+1

= a
⌫+1

+ ↵⇤
⌫

= [a
⌫+1

; a
⌫

, . . . , a
1

]

(see, for example, [39]).
In particular, this equality enables one to study the Dirichlet spectrum

D =
n

� 2 R : there is an ↵ 2 R such that � =
⇣

lim sup
q!+1

q min
x6q

kx↵k
⌘�1

o

.

There are few papers devoted to the study of the Dirichlet spectrum (see [40] and
the bibliography there).

Of course, it is possible to give the definitions of the Lagrange and Dirichlet
spectra in terms of the function  

↵

(t).

3.2. The function  ↵(t). For m = n = 1 and ✓1
1

= ↵ the function (20) becomes

 
↵

(t) = min
16x6t

k↵xk.

Recently Kan and Moshchevitin [41] obtained the following result.

Theorem 16. Consider two irrational numbers ↵ and � with ↵±� /2 Z. Then the
di↵erence function

 
↵

(t)�  
�

(t)

changes sign infinitely often as t ! +1.

We do not give a proof. The only thing we would like to say here is that the
proof involves the formulae (45) and (46).

We also note that Khintchine’s Theorems 1 and 2 in § 1.2 show that the result
of Theorem 16 cannot be generalized to higher dimensions.

In Theorem 1 one can take  (t) = o(t�2), t ! +1. Let ✓1 and ✓2 be the num-
bers whose existence is asserted there. We take (�1,�2) to be badly approximable
numbers (in the sense of a linear form):

inf
(x1,x2)2Z2\{(0,0)}

�

kx
1

�1 + x
2

�2

k(max{|x
1

|, |x
2

|})2
�

> 0.

Then for su�ciently large t

 
(✓

1
,✓

2
)

(t) <  
(�

1
,�

2
)

(t).
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The situation for simultaneous approximations is quite similar. We use Theorem 2
with a function satisfying  

1

(t) = o(t�1/2) for t ! +1. Thus, we obtain ✓
1

and ✓
2

from Theorem 2. Also, we must take simultaneously badly approximable

numbers
✓

�
1

�
2

◆

:

inf
x2Z\{0}

⇣

max
j=1,2

kx�
j

k · |x|1/2

⌘

> 0.

Then
 ✓

✓1
✓2

◆ (t) <  ✓

�1
�2

◆ (t)

for su�ciently large t.

3.3. Two-dimensional lattices. Here we generalize the inequalities (42) (and
hence the lower bound in (44)) in a way convenient for our purposes. Consider a two-
dimensional completely rational linear subspace ⇡ ⇢ Rd and the two-dimensional
lattice ⇤ = ⇡ \ Zd. Suppose that the set

B = ⇡ \
n

z = (x,y) : max
16i6m

|x
i

| 6 1
o

is compact. Then the sup-norm in the space of vectors x induces a certain norm
| · |• on the subspace ⇡ (so that the ‘unit ball’ B = {z 2 ⇡ : |z|• = 1} is a bounded
convex 0-symmetric set). Consider a one-dimensional subspace ` ⇢ ⇡. Suppose
that 0 is the only point of ⇤ which belongs to `, and moreover, that

` \ {z = (x0,y0) : x0
1

= · · · = x0
m

= 0} = {0}.

Take a linear subspace L such that

L \ ⇡ = `, dim L > 1.

Since ` is not a completely rational subspace, L is also not completely rational.
We now define a best approximation to the subspace ` by points of the lattice ⇤

with respect to the norm | · |• and the subspace L to be a point z = (x,y) 2 ⇤
such that

dist(z,L ) = min dist(z0,L ),

where the minimum is taken over all points z0 2 ⇤ with

0 < |z0|• 6 |z|•,

and dist(z,L ) stands for the distance from z to the subspace L in the sup-norm
in Rd.

The best approximations naturally form infinite sequences

±z
1

,±z
2

, . . . ,±z
⌫

,±z
⌫+1

, . . . ,

dist(z
1

,L ) > dist(z
2

,L ) > · · · > dist(z
⌫

,L ) > dist(z
⌫+1

,L ) > · · · ,

|z
1

|• < |z
2

|• < · · · < |z
⌫

|• < |z
⌫+1

|• < · · · .



456 N. G. Moshchevitin

These sequences are analogous to the sequences (10) and (11). From the construc-
tion it follows that the quantities dist(z

⌫

,L ), |z
⌫

|• change strictly monotonically.
We say that the triple (⇡, `,L ) is good if for su�ciently large ⌫ the vector z

⌫

2 ⇤
is uniquely determined up to the sign.

An obvious generalization of the inequalities (42) is as follows.

Proposition 2. Suppose that the triple (⇡, `,L ) is good. Then there exist positive
constants C

1

and C
2

depending on ⇡, `, and L such that for all ⌫

C
1

6 dist(z
⌫

,L )|z
⌫+1

|• 6 C
2

.

To verify Proposition 2 it is su�cient to consider the two-dimensional convex
0-symmetric set

{z 2 ⇡ : |z|• 6 |z
⌫+1

|•, dist(z,L ) 6 dist(z
⌫

,L )}.

The linearly independent points z
⌫

, z
⌫+1

2 ⇤ belong to its boundary.

4. Singular systems in simultaneous Diophantine approximation

The case m = 1 is known as simultaneous Diophantine approximation. Every-
where in this section we suppose that m = 1, and we use the notation ✓1

j

= ✓
j

,
1 6 j 6 n. In this case

x = x
1

= x 2 Z1, M(x) = |x|, L
j

(x) = ✓
j

x.

Thus, we are interested in small values of

max
16j6n

kx✓
j

k.

The empty parallelepipeds (16), (17) take the form

⌦(0)

⌫

=
n

z0 = (x0, y0
1

, . . . , y0
n

) : |x0| 6 x
⌫

, max
16j6n

|x0✓
j

+ y0
j

| 6 max
16j6n

kx
⌫

✓
j

k

o

,

⌦
⌫

=
n

z0 = (x0, y0
1

, . . . , y0
n

) : |x0| 6 x
⌫+1

, max
16j6n

|x0✓
j

+ y0
j

| 6 max
16j6n

kx
⌫

✓
j

k

o

.

(47)

In the first parallelepiped there are no integer points except for 0 and ±z
⌫

. In
the second parallelepiped there are no integer points except for 0 and ±z

⌫

, ±z
⌫+1

.
Here z

⌫

= (x
⌫

, y
1,⌫

, . . . , y
n,⌫

) and x
⌫

> 0.
Take a function  (t) = o(t�1/n). The set of real numbers ⇥ 2 Rn forms

a  -singular system if for su�ciently large t the Diophantine system

max
16j6n

kx✓
j

k 6  (t), 0 < x 6 t,

admits an integer solution x 2 Z. In other words, this means that for the denomi-
nators x

⌫

of the best approximations one has

max
16j6n

kx
⌫

✓
j

k 6  (x
⌫+1

)

for su�ciently large ⌫.
Recall that for ⇥ = (✓

1

, . . . , ✓
n

) 2 Rn we denote by dimZ⇥ the maximal number
of numbers linearly independent over Z in the set 1, ✓

1

, . . . , ✓
n

.
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4.1. Linear independence of best approximation vectors. We formulate
immediate corollaries of the above general results.

Proposition 2 in § 3.3 gives us the following result.

Corollary 1. Suppose that dimZ⇥ = 2. Then there exists a constant � = �(⇥) > 0
such that

⇣
⌫

> �

M
⌫+1

8 ⌫ 2 N.

From the statement (ii) of Theorem 7 and the remark in § 2.1 (see p. 444) we
deduce the following corollaries.

Corollary 2. If n > 2 and dimZ⇥ > 3, then there exist infinitely many ⌫ such
that the vectors z

⌫

, z
⌫+1

, and z
⌫+2

are linearly independent.

Corollary 3. Suppose that n = 2 and dimZ⇥ = 3. Then there exist infinitely
many ⌫ such that for the best approximation vectors z

⌫+i

= (x
⌫+i

, y
1,⌫+i

, y
2,⌫+i

)
(i = 0, 1, 2) one has

det

0

@

x
⌫

y
1,⌫

y
2,⌫

x
⌫+1

y
1,⌫+1

y
2,⌫+1

x
⌫+2

y
1,⌫+2

y
2,⌫+2

1

A

6= 0.

Corollary 3 can be found in Lagarias’ paper [30]. The following more general
statement can be found in implicit form in Jarńık’s paper [13] (pp. 333–337).

Corollary 4. Suppose that n > 2 and dimZ⇥ > 3. Then there exist two indices
j
1

6= j
2

and an infinite sequence of values of ⌫ such that for the best approximation
vectors z

⌫+i

= (x
⌫+i

, y
1,⌫+i

, . . . , y
n,⌫+i

) (i = 0, 1, 2) one has

det

0

@

x
⌫

y
j1,⌫

y
j2,⌫

x
⌫+1

y
j1,⌫+1

y
j2,⌫+1

x
⌫+2

y
j1,⌫+2

y
j2,⌫+2

1

A

6= 0. (48)

Formally speaking, the statement in [13] is somewhat weaker. Here we would
like to make some comments on the proof of Corollary 4 (cf. the lemma on p. 333
in [13]).

By Corollary 2 there are infinitely many ⌫ such that the rank of the matrix
0

@

x
⌫

y
1,⌫

. . . y
n,⌫

x
⌫+1

y
1,⌫+1

. . . y
n,⌫+1

x
⌫+2

y
1,⌫+2

. . . y
n,⌫+2

1

A (49)

is equal to 3. If all the determinants (48) are equal to zero, then for some j
1

, j
2

, j
3

we have

det

0

@

y
j1,⌫

y
j2,⌫

y
j3,⌫

y
j1,⌫+1

y
j2,⌫+1

y
j3,⌫+1

y
j1,⌫+2

y
j2,⌫+2

y
j3,⌫+1

1

A

6= 0.

Therefore, the three-dimensional vectors (columns of the matrix (49))
0

@

y
j1,⌫

y
j1,⌫+1

y
j1,⌫+2

1

A ,

0

@

y
j2,⌫

y
j2,⌫+1

y
j2,⌫+2

1

A ,

0

@

y
j3,⌫

y
j3,⌫+1

y
j3,⌫+2

1

A (50)
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are linearly dependent. But then the vector
0

@

x
⌫

x
⌫+1

x
⌫+2

1

A

is linearly dependent with any two vectors in (50). This is not possible.
Before stating Corollary 5 we would like to do the following. Suppose that

dimZ⇥ > 3. We consider the determinant in Corollary 4 which is non-zero for
some ⌫. Then

1 6

�

�

�

�

�

�

det

0

@

x
⌫

y
j1,⌫

y
j2,⌫

x
⌫+1

y
j1,⌫+1

y
j2,⌫+1

x
⌫+2

y
j1,⌫+2

y
j2,⌫+2

1

A

�

�

�

�

�

�

=

�

�

�

�

�

�

det

0

@

x
⌫

y
j1,⌫

� ✓
j1x⌫ y

j2,⌫

� ✓
j2x⌫

x
⌫+1

y
j1,⌫+1

� ✓
j1x⌫+1

y
j2,⌫+1

� ✓
j2x⌫+1

x
⌫+2

y
j1,⌫+2

� ✓
j1x⌫+2

y
j2,⌫+2

� ✓
j2x⌫+2

1

A

�

�

�

�

�

�

6 6x
⌫+2

max
16j6n

kx
⌫

✓
j

k max
16j6n

kx
⌫+1

✓
j

k = 6M
⌫+2

⇣
⌫

⇣
⌫+1

. (51)

Thus, for infinitely many ⌫

M
⌫+2

⇣
⌫+1

> 1
6⇣
⌫

.

The next corollary is now obvious.

Corollary 5. Suppose that dimZ⇥ > 3. Then

lim sup
⌫!+1

M
⌫+1

⇣
⌫

= +1. (52)

This was proved by Jarńık for n = 2 in [9] (Satz 9). In the multidimensional
case it appears in the paper [14]. We note that in [9] the proof of (52) relies on
transference principle arguments. More precisely, Jarńık proves that

lim sup
t!+1

t 
⇥

(t) = +1, (53)

which is a consequence of (52). Here we formulate a slightly more precise result
due the author [42] (there is no reference to Jarńık’s paper in [42] since at that time
the author was not familiar with his results).

Theorem 17. Suppose that n > 2 and dimZ⇥ > 3. Then

⇣
⌫

M
⌫+1

! +1, ⌫ ! +1. (54)

Proof. 1. First, we consider a two-dimensional lattice ⇤2

⇢ Zn+1. Let det
2

⇤2 be
its fundamental two-dimensional volume. Then the collection of lattices

{⇤2

⇢ Zn+1 : det
2

⇤2 6 �}

is finite for any positive number �.
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2. Second, we consider the two-dimensional lattice ⇤2

⌫

= hz
⌫

, z
⌫+1

iZ generated by
two consecutive best approximations. Since conv(0, z

⌫

, z
⌫+1

) ⇢ ⌦
⌫

(⌦
⌫

is defined
in (47)), it follows that for some positive constant C(⇥)

1
2

det
2

⇤2

⌫

= vol
2

�

conv(0, z
⌫

, z
⌫+1

)
�

6 C(⇥)⇣
⌫

M
⌫+1

.

3. Third, we note that from the condition dimZ⇥ > 3 it follows that for any
fixed µ we have z

⌫

/2 ⇤2

µ

for su�ciently large ⌫. Hence, for any µ and su�ciently
large ⌫ the two-dimensional lattice ⇤2

⌫

does not coincide with any of the lattices
⇤2

1

, . . . ,⇤2

µ

.
Theorem 17 now follows.

We state here a corollary of Theorem 17 which is in some sense analogous to
Proposition 2 in § 3.3.

In analogy to what was done in § 3.3, we consider a completely rational linear
subspace ⇡ ⇢ Rd with dim⇡ > 3 such that ⇡ \ {z = (x,y) : max

16i6m

|x
i

| 6 1} is
a bounded set. Consider the lattice ⇤ = ⇡ \ Zd. Let ` ⇢ ⇡ be a one-dimensional
linear subspace of ⇡. We now suppose that ` is not contained in a proper completely
rational subspace of ⇡. (This condition is stronger than the condition that 0 is the
only point of ⇤ in `; here is a di↵erence from the arguments in § 3.3)

For the induced norm | · |• in the subspace ⇡ we consider the sequence of best
approximations z

⌫

2 ⇤ to the subspace ` with respect to the norm | · |• and with
respect to some subspace L � ` = L \ ⇡. Here the definition of a good triple
(⇡, `,L ) is quite similar to the definition in § 3.3.

Proposition 3. Under the described conditions, for a good triple (⇡, `,L )

dist(z
⌫

,L )|z
⌫+1

|• ! +1, ⌫ ! +1.

4.2. Degeneracy of dimension for best simultaneous approximations. We
give a result obtained by the author in [32] (see also [33]) which provides a coun-
terexample to a conjecture of Lagarias in [30].

Theorem 18. Suppose that n > 3. Then there exist real numbers ✓
1

, . . . , ✓
n

that
are linearly independent together with 1 over Z and have the property that among
any n + 1 consecutive best approximation vectors z

⌫

, . . . , z
⌫+n

there exist at most
three linearly independent vectors.

We make a brief remark about the proof of this theorem. The numbers ✓
1

, . . . , ✓
n

will be determined by rational approximations of them. These rational approxima-
tions themselves are constructed by a certain inductive procedure. The main tool
of this inductive procedure is the following statement.

Lemma 1. Let ↵= (a
1

/q, . . . , a
n

/q) be a rational point with g.c.d.(a
1

, . . . , a
n

, q) = 1
such that the following conditions hold.

(i) The finite sequence of best simultaneous approximations

z
⌫

= (x
⌫

, y
1,⌫

, . . . , y
n,⌫

), 1 6 ⌫ 6 k,

(x
k

, y
1,k

, . . . , y
n,k

) = (q, a
1

, . . . , a
n

),

is uniquely determined.
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(ii) There exist a two-dimensional completely rational subspace ⇡ and an index
µ < k such that

z
⌫

2 ⇡, µ 6 ⌫ 6 k.

(iii) For the kth best approximation,

⇣
k

< ⇢(⇡)

(⇢(⇡) is defined in (24)).
Then there exists an " > 0 such that for all points � in the "-neighbourhood of ↵

the following assertions are true.
(i⇤) All the vectors of best approximation to ↵ are also vectors of best approxi-

mation to �.
(ii⇤) All the extended vectors of best approximation to � with denominator x in

the interval x
µ

6 x 6 x
k

belong to the subspace ⇡.

To carry out the inductive step of the induction, one must take a two-dimensional
completely rational subspace ⇡

1

3 ↵, and then a new rational point ↵
1

2 ⇡
1

close to ↵ and such that ↵
1

satisfies the assertion of Lemma 1 with ⇡ replaced
by ⇡

1

. Moreover, one should take ↵
1

in such a way that it has > n + 1 consecutive
best approximation vectors in the subspace ⇡

1

. To ensure the linear independence
together with 1 over Z of the components of the limit vector, one should take the
two-dimensional subspaces so that R(⇥) = n + 1.

5. Singularity and Diophantine type

Suppose that the function '(t) decreases to zero as t ! +1. We say that
a matrix ⇥ is of Diophantine type 6 '(t) if for infinitely many x 2 Zm

max
16j6n

kL
j

(x)k 6 '
⇣

max
16i6m

|x
i

|

⌘

.

Jarńık [13] obtained simple and beautiful bounds for the Diophantine type for
singular matrices. Here we present his theorems. Laurent [43] showed that in
the cases (m, n) = (1, 2), (2, 1) Jarńık’s bounds cannot be improved. We shall
give the exact formulations of Laurent’s results in § 8.3. In this section we give
Jarńık’s original results in §§ 5.1, 5.3, 5.5. In §§ 5.2, 5.4, 5.6 we give improvements
of his results which were obtained by the author in the preprint [44].

5.1. Case m = 1. First of all we consider the problem of simultaneous approxi-
mations. Jarńık (see [13], Theorem 3) obtained the following result.

Theorem 19. Let  (t) be a continuous function of t, decreasing to zero as t!+1.
Suppose that the function t (t) increases to infinity as t ! +1. Let !(t) be the
inverse function of the function t (t), and let

'[ ](t) =  

✓

!

✓

1
6 (t)

◆◆

.

Let n > 2 and dimZ⇥ > 3. Assume that the matrix ⇥ is  -singular. Then there
are infinitely many integers x such that

max
16j6n

kx✓
j

k 6 '[ ](x).
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We now prove a more precise statement: if the best approximations z
⌫

, z
⌫+1

,
and z

⌫+2

are linearly independent, then

⇣
⌫+1

6 '[ ](x
⌫+1

). (55)

Theorem 19 follows immediately from this fact and Corollary 2 (p. 457).
Indeed, we can assume that the determinant (48) is non-zero. Then the inequal-

ity (51) and Proposition 1 (see p. 442) lead to the estimate

1 6 6M
⌫+2

 (M
⌫+2

) (M
⌫+1

) = 6x
⌫+2

 (x
⌫+2

) (x
⌫+1

),

and (55) follows immediately.
To make the result of Theorem 19 more clear, we give a corollary about Dio-

phantine exponents, also due to Jarńık (see [13], part I of Theorem 1).

Corollary. Let n > 2 and dimZ⇥ > 3, and let ↵(⇥) and �(⇥) be the suprema of
those � for which the respective conditions

lim sup
t!+1

t� 
⇥

(t) < +1 (56)

and

lim inf
t!+1

t� 
⇥

(t) < +1, (57)

hold for Jarńık’s function (20). It is clear that 1/n 6 ↵(⇥) 6 �(⇥) 6 +1. If
↵(✓) < 1, then

�(⇥) > ↵2(⇥)
1� ↵(⇥)

. (58)

Moreover, if ↵(⇥) = 1, then �(⇥) = +1.

5.2. Case m = 1, n = 3. For ↵ 2 [1/3, 1] let

g
1

(↵) =
(1� ↵)↵+

p

(1� ↵)2↵2 + 4↵(2↵2

� 2↵+ 1)
4↵2

� 4↵+ 2
.

Note that g
1

(↵) is a root of the equation

(2↵2

� 2↵+ 1)x2 + ↵(↵� 1)x� ↵ = 0.

It is easy to see that

g
1

(↵) = max
�>1, �(1�↵)�↵>0

min
⇢

�,
↵

�(1� ↵)� ↵
,
1
↵
�

✓

1
↵
� 1

◆

�

�

�

, (59)

g
1

✓

1
3

◆

= g
1

(1) = 1.

Moreover, if ↵ 2 (1/3, 1), then g
1

(↵) > 1.
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Let ↵
0

2 (1/2, 1) be the root of the equation

x3

� x2 + 2x = 1.

Then for 1/3 < ↵ < ↵
0

g
1

(↵) > max
⇢

1,
↵

1� ↵

�

.

Theorem 20.1 Let m = 1 and n = 3. Suppose that the matrix ⇥ consists of
numbers ✓

1

, ✓
2

, ✓
3

linearly independent together with 1 over Z. Then

�(⇥) > ↵(⇥)g
1

(↵(⇥)). (60)

Obviously, the inequality (60) is stronger than the result of Theorem 19 (and its
corollary) if 1/3 < ↵(⇥) < ↵

0

.

Proof. Assume the inequality  
⇥

(t) 6  (t) for some continuous function  (t)
decreasing to zero. Suppose that the function t 7! t (t) increases to infinity as
t ! +1.

We consider the sequence of best approximations z
⌫

= (x
⌫

, y
1,⌫

, y
2,⌫

, y
3,⌫

). From
the linear independence condition it follows that there is an infinite sequence of pairs
of indices ⌫ < k such that ⌫ ! +1 and the following three conditions hold:

• both the triples
(z
⌫�1

, z
⌫

, z
⌫+1

), (z
k�1

, z
k

, z
k+1

)

consist of linearly independent vectors;
• there is a two-dimensional subspace ⇡ such that

z
l

2 ⇡ for ⌫ 6 l 6 k, z
⌫�1

/2 ⇡, z
k+1

/2 ⇡;

• the four vectors z
⌫�1

, z
⌫

, z
k

, z
k+1

are linearly independent.
Thus,

1 6

�

�

�

�

�

�

�

�

det

0

B

B

@

y
1,⌫�1

y
2,⌫�1

y
3,⌫�1

x
⌫�1

y
1,⌫

y
2,⌫

y
3,⌫

x
⌫

y
1,k

y
2,k

y
3,k

x
k

y
1,k+1

y
2,k+1

y
3,k+1

x
k+1

1

C

C

A

�

�

�

�

�

�

�

�

6 24⇣
⌫�1

⇣
⌫

⇣
k

M
k+1

6 24 (M
⌫

) (M
⌫+1

) (M
k+1

)M
k+1

< 24 (M
⌫

)( (M
⌫+1

))2M
k+1

. (61)

We must now consider three cases.
1�. For some � > 1 there are infinitely many of the pairs (⌫, k) under considera-

tion such that
M

k+1

6 M�

⌫+1

.

From the inequality (61) it follows that

1
24 (M

⌫

)
6 M�

⌫+1

 (M
⌫+1

) (M�

⌫+1

).

1Recently the author obtained a stronger result; see arXiv: 1009.0987.
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Supposing in addition that the function t 7! t� (t) (t�) is increasing, and denoting
its inverse function by ⇢(t), we have

⇣
⌫

6  (M
⌫+1

) 6  

✓

⇢

✓

1
24 (M

⌫

)

◆◆

. (62)

2�. For some � > 1 there are infinitely many of the pairs (⌫, k) under considera-
tion such that

M
k+1

> M �

k

.

In this case we immediately get that

⇣
k

6  (M
k+1

) 6  (M �

k

). (63)

3�. For infinitely many of the pairs of indices (⌫, k) under consideration,

M�

⌫+1

6 M
k+1

6 M �

k

.

Then for the two-dimensional lattice ⇤ = Z4

\ ⇡ we have

⇣
l

M
l+1

⇣

⇥

det
2

⇤

for ⌫ 6 l 6 k � 1. Therefore, we get the inequalities

⇣
k�1

⌧

⇥

M
⌫+1

 (M
⌫+1

)
M

k

⌧

⇥

M
�/��1

k

 (M �/�

k

) 6 M
�/��1

k�1

 (M �/�

k�1

) (64)

(of course, it is necessary to make the additional assumption that the function
t�/��1 (t�/�) decreases monotonically).

To finish the proof of the theorem it is enough to consider a small " > 0 and the
function  (t) = t�↵+". In view of (59), the inequality (60) follows from (62)–(64).

5.3. Case m = 2. We formulate Jarńık’s theorem about Diophantine type in [13].
This theorem is analogous to Theorem 19.

Theorem 21. Let m = 2 and n > 1. Suppose that a non-degenerate matrix

⇥ =

0

@

✓1
1

✓2
1

. . . . . . . .
✓1

n

✓2
n

1

A

is  -singular, with some function satisfying  (t) = o(t�1) as t ! +1. Let

'
[ ]

2

(t) =  

✓

1
6t (t)

◆

.

Then there exist infinitely many integer vectors x = (x
1

, x
2

) such that

max
16j6n

k✓1
j

x
1

+ ✓2
j

x
2

k 6 '
[ ]

2

⇣

max
i=1,2

|x
i

|

⌘

.
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We note that R(⇥) > 3 for a good matrix ⇥ under the conditions of the theorem.
For n = 1 this follows from the statement (iii) of Theorem 7. For n > 2 it follows
from the  -singularity of the matrix and from Theorem 8. To get a proof one must
establish an analogue of Corollary 4 in § 4.1 (see p. 457). For some k there exist
infinitely many ⌫ such that the determinant

det

0

@

x
1,⌫

x
2,⌫

y
k,⌫

x
1,⌫+1

x
2,⌫+1

y
k,⌫+1

x
1,⌫+2

x
2,⌫+2

y
k,⌫+2

1

A

is not equal to zero. (This statement needs some more arguments, which are omitted
here.) Then for such values of ⌫ we must establish an estimate similar to (51):

1 6 6M
⌫+2

M
⌫+1

⇣
⌫

6 6M
⌫+2

M
⌫+1

 (M
⌫+1

).

To complete the proof, we use the monotonicity of the function  .
We do not give here the proof in detail. (For example, one must consider the case

when the matrix ⇥ is not good.) All the details can be found in Jarńık’s original
paper.

Jarńık deduces the following corollary from Theorem 21.

Corollary. Let m = 2 and n > 1, and suppose that the matrix ⇥ is non-degenerate.
Consider the values ↵(⇥) and �(⇥) defined as the suprema of those � for which (56)
and (57) hold, respectively. Then

�(⇥) > ↵(⇥)
�

↵(⇥)� 1
�

. (65)

5.4. Case m = n = 2. For ↵ > 1 put

g
3

(↵) =
1� ↵+

p

(1� ↵)2 + 4↵(2↵2

� 2↵+ 1)
2↵

.

This is a solution of the equation

↵x2 + (↵� 1)x� (2↵2

� 2↵+ 1) = 0. (66)

Note that g
3

(1) = 1, and that g
3

(↵) > 1 for ↵ > 1. Moreover, 1 6 ↵ <
�

(1 +
p

5 )/2
�

2 implies that

g
3

(↵) > max(1,↵� 1).

Theorem 22. Let the numbers ✓i

j

(i, j = 1, 2) be linearly independent together with
1 over Z. Consider the matrix

⇥ =
✓

✓1
1

✓2
1

✓1
2

✓2
2

◆

.

Then
�(⇥) > ↵(⇥)g

3

(↵(⇥)).

Theorem 22 is stronger than Theorem 21 if ↵(⇥) 2
�

1,
�

(1 +
p

5 )/2
�

2

�

.
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Proof. If R(⇥) = 2, then from Theorem 8 it follows that ↵(⇥) = 1, and there is
nothing to prove,

By Corollary 4 in § 2.1 (p. 446) it is not possible that R(⇥) = 3. Thus, R(⇥) = 4.
Hence there is an infinite sequence of pairs of indices ⌫ < k such that ⌫ ! +1 and
the following three statements are valid:

• both the triples
(z
⌫�1

, z
⌫

, z
⌫+1

), (z
k�1

, z
k

, z
k+1

),

consist of linearly independent vectors;
• there is a two-dimensional subspace ⇡ such that

z
l

2 ⇡ for ⌫ 6 l 6 k, z
⌫�1

/2 ⇡, z
k+1

/2 ⇡;

• the four vectors z
⌫�1

, z
⌫

, z
k

, z
k+1

are linearly independent.
Now

1 6

�

�

�

�

�

�

�

�

det

0

B

B

@

x
1,⌫�1

x
2,⌫�1

y
1,⌫�1

y
2,⌫�1

x
1,⌫

x
2,⌫

y
1,⌫

y
2,⌫

x
1,k

x
2,k

y
1,k

y
2,k

x
1,k+1

x
2,k+1

y
1,k+1

y
2,k+1

1

C

C

A

�

�

�

�

�

�

�

�

6 24⇣
⌫�1

⇣
⌫

M
k

M
k+1

.

Suppose that  (t) is decreasing. Let  
⇥

(t) 6  (t). Then

1 6 24M
k+1

M
k

 (M
⌫+1

) (M
⌫

). (67)

We consider two cases.
1�. For some � > 1 there are infinitely many of the pairs (⌫, k) under considera-

tion such that
M

k+1

> M�

k

.

Then we immediately get that

⇣
k

6  (M
k+1

) 6  (M�

k

). (68)

2�. For infinitely many of the pairs (⌫, k) under consideration,

M
k+1

6 M�

k

.

Then (67) implies that
M

k

>
�

 (M
⌫

)
��2/(1+�)

. (69)

We consider the two-dimensional lattice ⇤ = ⇡\Z4 with fundamental volume det⇤.
The distance from a point z 2 ⇡ to the two-dimensional subspace

L = {z = (x
1

, x
2

, y
1

, y
2

) : ✓1
1

x
1

+ ✓2
1

x
2

+ y
1

= ✓1
2

x
1

+ ✓2
2

x
2

+ y
2

= 0}

is proportional to the distance from z to the one-dimensional subspace L \⇡. (The
case L \ ⇡ = 0 can be treated similarly.) Let � be the proportionality coe�cient.
The parallelepiped

n

z = (x
1

, x
2

, y
1

, y
2

) : |x| < M
l+1

, max
16j63

|✓
j

x� y
j

| < ⇣
l

o
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contains no non-zero integer points inside itself. Hence

�
1

(⇥)� det⇤ 6 ⇣
l

M
l+1

6 �
2

(⇥)� det⇤, ⌫ 6 l 6 k � 1, (70)

for some positive constants �
i

(⇥), i = 1, 2. From (69) and (70) we deduce that

⇣
⌫

⌧

⇥

 (M
k

)M
k

M
⌫+1

⌧

⇥

M�1

⌫

( (M
⌫

))�2/(1+�) 
�

( (M
⌫

))�2/(1+�)

�

. (71)

To finish the proof we consider the function  (t) = t�↵(⇥)+" with a small positive
number ". Since � = g

3

(↵(⇥)) satisfies (66), we obtain the statement of Theo-
rem 22.

5.5. Case m > 2. In the case m > 2 Jarńık in [13] uses more complicated argu-
ments. That is why he proves only a statement concerning Diophantine exponents
but does not considers a result with a function  of general type.

Theorem 23. Let m > 3. Suppose that for a non-degenerate matrix ⇥

↵(⇥) > (5m2)m�1.

Then
�(⇥) > (↵(⇥))m/(m�1)

� 3↵(⇥).

We do not give the proof of this theorem. It is based on an elegant construction
of a sequence of linearly independent best approximation vectors. The author is
sure that the result of Theorem 23 is not optimal and can be improved. In the next
subsection we consider such an improvement in a particular case.

5.6. Case m = 3, n = 1. For ↵ > 3 we define the functions

g
2

(↵) =
r

↵+
1
↵2

�

7
4

+
1
↵
�

1
2

, h(↵) = ↵� g
2

(↵)� 1.

We note that g
2

(↵) and h(↵) increase to infinity as ↵! +1 and that

g
2

(3) = h(3) = 1, g
2

(↵) 6 ↵� 2.

Theorem 24. Consider a row matrix ⇥ = (✓1, ✓2, ✓3) consisting of numbers lin-
early independent together with 1 over Z. Then the exponents ↵(⇥) and �(⇥) are
connected by the relation

�(⇥) > ↵(⇥)g
2

(↵(⇥)). (72)

Proof. We consider the sequence of best approximation vectors z
⌫

.
First of all, consider the case R(⇥) = 3. Then for su�ciently large ⌫ the vec-

tors z
⌫

lie in some three-dimensional completely rational subspace ⇡, and we are
actually dealing with the best approximations of the two-dimensional subspace
⇡ \L (⇥) by points of the three-dimensional lattice Z4

\ ⇡ (the definition of the
subspace L (⇥) is given in § 2.1). Then we can apply Theorem 21, and its corollary
gives the estimate (65), which is better than (72).

Let us now consider the case R(⇥) = 4. In this case there are infinitely many
pairs of indices ⌫ < k (⌫ ! +1) such that:
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• the two triples
z
⌫�1

, z
⌫

, z
⌫+1

, z
k�1

, z
k

, z
k+1

consist of linearly independent vectors;
• there is a two-dimensional completely rational subspace ⇡ such that

z
l

2 ⇡ for ⌫ 6 l 6 k, z
⌫�1

/2 ⇡, z
k+1

/2 ⇡;

• the four vectors z
⌫�1

, z
⌫

, z
⌫+1

, z
k+1

are linearly independent.
If ⇥ is  -singular and the functions  (t) and t (t) are monotone, then

1 6

�

�

�

�

�

�

�

�

det

0

B

B

@

x
1,⌫�1

x
2,⌫�1

x
3,⌫�1

y
⌫�1

x
1,⌫

x
2,⌫

x
3,⌫

y
⌫

x
1,⌫+1

x
2,⌫+1

x
3,⌫+1

y
⌫+1

x
1,k+1

x
2,k+1

x
3,k+1

y
k+1

1

C

C

A

�

�

�

�

�

�

�

�

6 24⇣
⌫�1

M
⌫

M
⌫+1

M
k+1

6 24 (M
⌫

)M
⌫

M
⌫+1

M
k+1

. (73)

We must consider three cases.
1�. There are infinitely many pairs (⌫, k) under consideration such that

M
k+1

6 Mh(↵(⇥))

⌫

.

Then from (73) we deduce that

M
⌫+1

> 1

24 (M
⌫

)M1+h(↵(⇥))

⌫

, ⇣
⌫

6  

✓

1

24 (M
⌫

)M1+h(↵(⇥))

⌫

◆

,

and the last inequality immediately implies (72).
2�. For infinitely many pairs (⌫, k) under consideration,

M
k+1

> M
g2(↵(⇥))

k

.

Then we immediately get that

⇣
k

6  (M
k+1

) 6  
�

M
g2(↵(⇥))

k

�

,

and (72) follows.
3�. There are infinitely many pairs (⌫, k) under consideration such that

Mh(↵(⇥))

⌫

6 M
k+1

6 M
g2(↵(⇥))

k

.

In this case a detailed investigation of the best approximations in the subspace ⇡
is necessary. Consider a projection of ⇡ on the subspace L (⇥). We can assume
this projection to be some two-dimensional subspace ⇡⇤ intersecting ⇡ in a line
` = ⇡ \ ⇡⇤. For a point z 2 ⇡ the distance from z to the subspace L (⇥) is
proportional to the distance from z to the one-dimensional subspace `. Let �
be the coe�cient of this proportionality. The vectors z

l

are best approximation
vectors, so they, regarded as vectors in the lattice ⇤ = Z4

\ ⇡, are automatically
best approximations of ` by points of ⇤ with respect to the induced norm. Let
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det⇤ be the two-dimensional fundamental volume of the lattice ⇤. It is clear that
for some positive constants �

i

(⇥) (i = 1, 2)

�
1

(⇥)� det⇤ 6 ⇣
l

M
l+1

6 �
2

(⇥)� det⇤, ⌫ 6 l 6 k � 1.

In particular,

⇣
⌫

M
⌫+1

6 �
2

(⇥)
�
1

(⇥)
⇣
k�1

M
k

.

We take into account that ⇣
k�1

6  (M
k

). From the condition which defines this
case we deduce that

⇣
⌫

6 �
2

(⇥)
�
1

(⇥)
 (M

k

)M
k

M
⌫+1

6 �
2

(⇥)
�
1

(⇥)
 
�

Mh(↵(⇥))/g2(↵(⇥))

⌫

�

Mh(↵(⇥))/g2(↵(⇥))�1

⌫

.

Since
↵(g

2

(↵))2 + (↵� 2)g
2

(↵)� (↵� 1)2 = 0,

we again have (72).
The theorem is proved.

6. Inhomogeneous approximations

6.1. One-dimensional setting. Given real numbers ✓ and ↵, we consider the
quantity

�(✓,↵) = lim inf
x!1

|x| · kx✓ � ↵k

(here we suppose that x takes integer values). By the classical Minkowski theorem
(see [23], Chap. III, Theorem II), for any ✓ and any ↵ not of the form a✓ + b with
integers a and b we have the inequality

�(✓,↵) 6 1
4

.

Let
�(✓) = �(✓, 0) and µ(✓) = sup

↵

�(✓,↵),

where the supremum is taken over all ↵ not of the form a✓ + b with integers a, b.
Khintchine in [5] proved the inequality

µ(✓) 6
p

1� 4�2(✓)
4

, (74)

which is sharp for certain values of ✓. For example, for ✓ equivalent to a purely
periodic continued fraction [0; k, k, k, . . . ], where the partial quotient k is equal to
1 or is even, the inequality (74) turns into an equality. It follows from (74) that
the equality µ(✓) = 1/4 is possible only for ✓ with unbounded partial quotients in
its continued fraction expansion.
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There are some other results in Khintchine’s paper [5]. Various papers have
been devoted to the study of values of the function �(✓,↵) as well as of some other
related functions, such as the ‘one-sided’ function

k(✓,↵) = lim inf
x!+1

xkx✓ � ↵k.

Here we can mention papers by Cassels [45], Barnes [46], and Cusick and Polling-
ton [47].

We now state a simple (but nevertheless non-trivial) one-dimensional result
which was proved in Khintchine’s paper [1] (Satz 4).

Theorem 25. There exists an absolute positive constant � with the property that
for any real number ✓ there is a real number ↵ such that for all positive integers x

kx✓ � ↵k > �

x
.

In Cassels’ book [23] the result of Theorem 25 is proved with � = 1/51 (see [23],
Chap. V, Theorem XI). In the Russian translation there is a strange remark after
Chap. V concerning possible bounds for the exact value of �. The best result is
probably due to Godwin [48].

Below we discuss multidimensional generalizations of Theorem 25 along with
the steps of its proof, since the proof of this theorem was a starting point for
all the multidimensional results, including Jarńık’s theorems, which will be dis-
cussed in the next subsection.

6.2. Multidimensional theorems. A certain connection between homogeneous
and inhomogeneous linear Diophantine approximations appears in the proof of The-
orem 25. The study of this connection was extended to the multidimensional
situation. It turned out that the singularity characteristics of the corresponding
homogeneous systems are of importance. Khintchine conducted repeated studies
of inhomogeneous approximations. In 1936 he proved in [4] a fundamental multi-
dimensional result, stated below (more precisely, he stated this result for arbitrary
values of m but proved it only for m = 2).

Theorem 26 (Khintchine [4]). The following two conditions (i) and (ii) are equiv-
alent :

(i) the set of real numbers ✓
1

, . . . , ✓
m

satisfies the condition

lim sup
t!+1

tm min
x2Zm

: 0<M(x)6t

�

�

�

�

X

16i6m

✓
i

x
i

�

�

�

�

> 0;

(ii) the set of real numbers ✓
1

, . . . , ✓
m

satisfies for any real number ↵ the condi-
tion

lim inf
t!+1

tm min
x2Zm

: M(x)6t

�

�

�

�

X

16i6m

✓
i

x
i

� ↵

�

�

�

�

< +1.

Obviously, the condition (i) is equivalent to the regularity of the system ⇥ in (1)
with the given m and n = 1.
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We note that the proofs of all the results in the present subsection rely on ideas
in Khintchine’s papers [1], [4].

In 1948 Khintchine proved the following result in [7].
We recall his notation. A system ⇥ is called a Tchebyshev system if for any tuple

↵ = (↵
1

, . . . ,↵
n

) 2 Rn there exists a constant � = �(↵) such that the system of
Diophantine inequalities

max
16j6n

kL
j

(x)� ↵
j

k 6 �
⇣

max
16i6m

|x
i

|

⌘�m/n

has integer solutions with arbitrarily large values of max
16i6m

|x
i

|.
The main result in [7] is as follows.

Theorem 27. A system ⇥ is regular if and only if it is a Tchebyshev system.

Thus, Theorem 26 above is a special case of Theorem 27 (n = 1).
One can find a proof of this theorem not only in Khintchine’s original paper [7]

but also in the book [23], Chap. X.
We should note that Jarńık obtained more general results earlier (in the papers

[10] and [11] in 1939 and 1941, respectively; see also [12]). We state these below.
Together with the ‘homogeneous’ Jarńık function (20) it is convenient to consider

an ‘inhomogeneous’ function

 
⇥,↵

(t) = min
x2Rm

: M(x)6t

max
16j6n

kL
j

(x)� ↵
j

k, ↵ = (↵
1

, . . . ,↵
n

) 2 Rn,

and the function
 [inhom]

⇥

(t) = sup
↵2[0,1]

n

 
⇥,↵

(t).

One can take the minimum over all non-zero vectors x in the definition of the
‘inhomogeneous’ Jarńık function. The final result will be the same.

It is clear that the Jarńık function (20) satisfies the equality

 
⇥

(t) =  
⇥,0

(t).

Together with the system ⇥ we consider the transposed system t⇥. For the Jarńık
function  t

⇥

(t) we obviously have

 t
⇥

(t) = min
x2Rn

: M(x)<t

max
16i6m

kL⇤
i

(x)k,

where

L⇤
i

(x) =
n

X

j=1

✓i

j

x
j

.

Everywhere in this subsection we suppose that the function  (t) decreases to
zero. Let ⇢(t) be the function inverse to the function 1/ (t).

First of all, we formulate a simpler result contained in [10] (Theorem 1 in [10]).
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Theorem 28 (Jarńık [10]). Suppose that  (t) has the property that for some ⌘ > 0
the function 1/(t⌘ (t)) increases to infinity as t ! +1. Assume that for su�-
ciently large t

 t
⇥

(t) >  (t). (75)

Then for su�ciently large t

 [inhom]

⇥

(t) 6 ((m + n)! (m + n))(⌘+1)/⌘

⇢(t)
. (76)

In the case  t
⇥

(t) = ct�n/m with a positive constant c, we obtain from Theo-
rem 28 the following statement.

Corollary. Suppose that the transposed system t⇥ is regular. Then ⇥ is a Tcheby-
shev system.

The following theorem is actually a result of Jarńık in the paper [11] (Theorem 7
in [11]; see also [12]). The di↵erence between Jarńık’s result and the theorem below
is that in Theorem 29 we have explicit constants.

Theorem 29. Suppose that for all su�ciently large t

 t
⇥

(t) 6  (t). (77)

Then there exists a tuple (↵
1

, . . . ,↵
n

) of real numbers such that for su�ciently
large t

 
⇥,↵

(t) > 1
24n3/2⇢(8mt)

. (78)

Such a statement is the main complication in the problem under consideration.
It is related to Khintchine’s fundamental Theorem 25 which was proved in [1]. The
proof of this theorem will be discussed in the next subsection. Here we mention
two important corollaries.

If we suppose that  t
⇥

(t) = o(t�n/m) for t ! +1, then we obtain the following
statement.

Corollary. If the transposed system t⇥ is singular, then the system ⇥ is not
a Tchebyshev system.

This corollary combined with the corollary of Theorem 28 leads to the following
statement, which it is natural to attribute to Jarńık.

Theorem 30. The transposed system t⇥ is regular if and only if it is a Tchebyshev
system.

To see that Khintchine’s Theorem 27 is equivalent to Jarńık’s Theorem 30, we
recall a transference theorem proved by Khintchine in 1948 in [6] (see also the
book [23], Chap. V, Theorem XII).

Theorem 31. A system ⇥ is singular if and only if the transposed system t⇥ is
singular.

But Jarńık’s paper [11] (1941) contains the following statement.
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Theorem 32. If there is a positive constant �
1

such that for su�ciently large t

 
⇥

(t) > �
1

t�m/n,

then there is a positive constant �
2

such that for su�ciently large t

 t
⇥

(t) > �
2

t�n/m.

Theorems 31 and 32 are obviously equivalent!
We discuss some other transference theorems in § 8.
The proofs of Jarńık’s Theorems 28 and 29 do not di↵er radically from the proof

of Theorem 31 given by Khintchine. Khintchine proved that a regular system ⇥ is
a Tchebyshev system. To do this it is su�cient to apply Minkowski’s theorem to
the system of m + n linear forms

L
j

(x)� y
j

� ⇠
j

u, j = 1, . . . , n, x
j

, j = 1, . . . ,m,

in the m + n + 1 variables x
1

, . . . , x
n

, y
1

, . . . , y
m

, u (here the ⇠
j

are some new real
parameters). Then by certain constructive arguments (to be discussed in § 6.3) and
by transference arguments he proves the converse statement. Jarńık uses transfer-
ence arguments in Theorem 28, while Theorem 29 is a constructive theorem.

We would like to discuss one more corollary of Theorem 29. By the Minkowski
convex body theorem (mentioned at the beginning of § 1), if we let  (t) = t�n/m,
then the condition (77) in Jarńık’s Theorem 29 becomes an empty condition. Hence,
we deduce the following result as a corollary (this result was stated in Cassels’ book
[23] as Theorem X in Chap.V).

Theorem 33. For any positive integers n and m there is a positive constant �
m,n

with the property that for any matrix ⇥ there exists a vector (↵
1

, . . . ,↵
n

) such that

inf
x2Zm\{0}

⇣

max
16j6n

kL
j

(x)� ↵
j

k

⌘

n

⇣

max
16i6m

|x
i

|

⌘

m

> �
m,n

.

This theorem is a direct generalization of Theorem 25, proved by Khintchine
in [1], and there is an interesting story related to it which we discuss it in § 6.4.

In concluding the present subsection we note that in Jarńık’s wonderful paper [11]
there are some other results which we do not give here. In particular, there is
a certain metric result.

6.3. On the proof of Theorem 29. The proof of Theorem 33 in the book [23]
can be transformed into a proof of Theorem 29. The original arguments by Jarńık
are more complicated. Here we give the scheme of a proof of Theorem 29, follow-
ing [23]. We restrict ourselves to the situation when the numbers ✓i

j

are linearly
independent together with 1 over Z. This is done for simplicity.

1. Consider the sequence of best approximations

w
⌫

= (u
1,⌫

, . . . , u
n,⌫

, v
1,⌫

, . . . , v
m,⌫

)

for the transposed system t⇥. From this sequence we must pick a subsequence w
⌫k

in such a way that

max
16i6m

kL⇤
i

(u
⌫k)k =  t

⇥

✓

M(u
⌫k+1)

3
p

n

◆

,

M(u
⌫+1

) > 3
p

n M(u
⌫

), M(u
⌫

) = max
16j6n

|u
j,⌫+1

|

(79)
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(see Lemma 4 in § 6 of Chap.V in [23], or the arguments in § 2, 2 in [7], or the
construction of Lemma 1 in [11]).

2. We need the following result on Diophantine approximation with a lacunary
sequence of vectors, taken from [23] (Lemma 2 in § 6 of Chap.V). It generalizes
a lemma of Khintchine (Hilfssatz 3, [1]). We discuss a further history of this state-
ment in § 13.1 in the Appendix.

Lemma 2. Suppose that a sequence of vectors u
k

= (u
1,k

, . . . , u
n,k

) 2 Rn, satisfies
the condition

max
16j6n

|u
j,k+1

| > 3
p

n max
16j6n

|u
j,k

|.

Then there exist real numbers ↵
1

, . . . ,↵
n

such that
�

�

�

�

X

16j6n

u
j,k

↵
j

�

�

�

�

> 1
4

, k = 1, 2, 3, . . . .

The additional factor
p

n (in comparison with the statement in [23]) appears
because we use the sup-norm and not the Euclidean norm.

3. Then one must prove that the numbers ↵
j

are precisely the inhomogeneities
whose existence is asserted in Theorem 29. For this purpose we use the identity

X

16j6n

u
j

↵
j

=
X

16j6n

u
j

(↵
j

� L
j

(x)) +
X

16j6n

u
j

L
j

(x)

=
X

16j6n

u
j

(↵
j

� L
j

(x)) +
X

16i6m

x
i

L⇤
i

(u),

where
x = (x

1

, . . . , x
m

) 2 Rm, u = (u
1

, . . . , u
n

) 2 Rn.

We apply this identity to the vector u
⌫k defined in item 1 of the proof (see (79)), for

the numbers ↵
j

in Lemma 2 and for an arbitrary vector x 2 Rm. Taking absolute
values and using Lemma 2, we get that

1
4

6 nM(u
⌫k) max

16j6n

kL
j

(x)� ↵
j

k+ m max
16i6m

|x
i

| ·  t
⇥

✓

M(u
⌫k+1)

3
p

n

◆

.

For a vector x we now choose k from the condition

 t
⇥

✓

M(u
⌫k)

3
p

n

◆

> 1
8m max

16i6m

|x
i

|

>  t
⇥

✓

M(u
⌫k+1)

3
p

n

◆

, (80)

whence
max

16j6n

kL
j

(x)� ↵
j

k > 1
8nM(u

⌫k)
. (81)

But from the condition (77) of our theorem and from (80) we obtain

 

✓

M(u
⌫k)

3
p

n

◆

>  t
⇥

✓

M(u
⌫k)

3
p

n

◆

> 1
8m max

16i6m

|x
i

|

.

By the definition of the function ⇢(·) we now get that

⇢
⇣

8m max
16i6m

|x
i

|

⌘

> M(u
⌫k)

3
p

n
.

We substitute the last inequality into (81) to obtain (78) with t = max
16i6m

|x
i

|.
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6.4. On Theorem 33. At present we see increasing interest in certain problems
related to linear inhomogeneous Diophantine approximation. In particular, Theo-
rem 33 has been generalized by several authors. In this subsection we discuss the
history and give the scheme of a proof of the strongest result so far.

Kleinbock proved the following theorem [49].

Theorem 34. Let B denote the set of real (m + 1)⇥ n matrices of the form

(✓i

j

, ⌘
j

), 1 6 i 6 m, 1 6 j 6 n,

such that

inf
x2Zm\{0}

⇣

max
16j6n

kL
j

(x)� ⌘
j

k

⌘

n

⇣

max
16i6m

|x
i

|

⌘

m

> 0.

Then B is a set of full Hausdor↵ dimension in Rmn+n.

Kleinbock’s proof relies on a consideration of certain flows on homogeneous
spaces. A simplified proof was given by Bugeaud, Harrap, Kristensen, and Velani
in [50]. Moreover, they obtained the following stronger result.

Theorem 35. For a collection

⇥ = {✓i

j

, 1 6 i 6 m, 1 6 j 6 n}

of real numbers consider the set B(⇥) of vectors (⌘
1

, . . . , ⌘
n

) such that

inf
x2Zm\{0}

⇣

max
16j6n

kL
j

(x)� ⌘
j

k

⌘

n

⇣

max
16i6m

|x
i

|

⌘

m

> 0.

Then B(⇥) is a set of full Hausdor↵ dimension in Rn.

To formulate further improvements, we need to use the theory of (↵,�)-games
constructed by Schmidt. The main concepts and results from this theory are col-
lected in § 13.4 in the Appendix; they are necessary for understanding the results
below in this subsection.

We now state a recent result of Tseng in [51].

Theorem 36. For any real number ✓ consider the set B of real numbers ⌘ such
that

inf
x2Z\{0}

|x| · k✓x + ⌘k > 0.

Then this set is an ↵-winning set for every ↵ 2 (0, 1/8).

Remark 2.3 in [51] asserts that Tseng and Einsiedler obtained a generalization
of Theorem 36 to the case of a system of linear forms of arbitrary dimension, and
here we must refer to the very recent preprint [52].

In [53] the author modified the proof of Theorem 33 and obtained the following
result.
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Theorem 37. Let ↵ 2 (0, 1/2]. For a collection

⇥ = {✓i

j

, 1 6 i 6 m, 1 6 j 6 n}

of real numbers consider the set B(⇥) of vectors (⌘
1

, . . . , ⌘
n

) such that

inf
x2Zm\{0}

⇣

max
16j6n

kL
j

(x)� ⌘
j

k

⌘

n

⇣

max
16i6m

|x
i

|

⌘

m

> 0,

Then this is an ↵-winning set in Rn.

A more general result is valid.

Theorem 38. Let ↵ 2 (0, 1/2] and suppose that the function  (t) strictly decreases
to zero as t ! +1. Let ⇢(t) be the function inverse to the function 1/ (t). Suppose
that for any w > 1

sup
x>1

⇢(wx)
⇢(x)

< +1.

For a matrix ⇥ consider the Jarńık function  t
⇥

and suppose that  t
⇥

(t) 6  (t)
for su�ciently large t. Then the set B(⇥) of all vectors (⌘

1

, . . . , ⌘
n

) such that

inf
x2Zm\{0}

⇣

max
16j6n

kL
j

(x)� ⌘
j

k

⌘

⇢
⇣

max
16i6m

|x
i

|

⌘

> 0,

is an ↵-winning set in Rn.

It is easy to see (since  t
⇥

(t) 6 t�n/m always holds) that Theorem 37 is a par-
ticular case of Theorem 38.

We give the scheme of the proof of this theorem below. To get a proof of
Theorem 38, we only need a certain modification of Lemma 2 on a lacunary sequence
of vectors in § 6.3.

Lemma 3. Consider a sequence ⇤ ⇢ Zn of integer vectors u(r) =
�

u
(r)

1

, . . . , u
(r)

n

�

2

Zn such that the sequence of their lengths

t
r

=
��

u
(r)

1

�

2 + · · · +
�

u(r)

n

�

2

�

1/2 (82)

satisfies the lacunarity condition

t
r+1

t
r

> M, r = 1, 2, 3, . . . , (83)

for some M > 1. Then the set

N(⇤) = {⌘ = (⌘
1

, . . . , ⌘
n

) 2 Rn : there exists a c(⌘) > 0 such that

ku
(r)

1

⌘
1

+ · · · + u(r)

n

⌘
n

k > c(⌘) for all r 2 N}

is ↵-winning for all ↵ 2 (0, 1/2].
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Under the conditions of Theorem 38 a vector ⌘ 2 N(⇤) (for a reasonable choice
of u(r)) will belong to the set B(⇥). This follows from the classical arguments in
the proof of Theorem 29. We recalled these arguments in § 6.3. The proofs of the
particular case (Theorem 37) and the general case (Theorem 38) are identical.

Here we give a sketch of the proof of Lemma 3.
As usual, for ↵,� 2 (0, 1) let � = 1 + ↵� � 2↵ > 0.
Consider a ball (in the Euclidean norm, which is more convenient here) B ⇢ Rn

with centre O and radius ⇢. We denote by S = @B its boundary and by µ the
normalized Lebesgue measure on S

�

so
R

S

dµ = µS = 1
�

.
Let x 2 S, and let ⇡(x) ⇢ Rn be the (n� 1)-dimensional a�ne subspace passing

through O and orthogonal to the one-dimensional subspace passing through O
and x. Let ⇧(x) be the half-space with boundary ⇡(x) and such that x 2 ⇧(x).

For the given ↵,� 2 (0, 1) consider the half-space ⇧
↵,�,⇢

(x) such that ⇧
↵,�,⇢

(x) ⇢
⇧(x) and the distance from ⇧

↵,�,⇢

(x) to O is equal to �⇢/2. Let

⌦(x) = S \⇧
↵,�,⇢

(x), ⌦⇤(x) =
[

y2S: ⇧(y)�⌦(x)

{y}.

It is clear that the measure µ⌦⇤(x) does not depend on x 2 S. Let

! = !(↵,�) = µ(⌦⇤(x)) 2 (0, 1). (84)

By means of a certain mean value argument we obtain the following statement.

Lemma 4. Take arbitrary a�ne subspaces ⇡
1

, . . . ,⇡
k

of dimension n � 1. Then
there exists a point x 2 S such that

⌦(x) \ ⇡
j

= ?

for at least d!ke values of the index j.

The following lemma is due to Schmidt ([24], Chap. 3, Lemma 1B).

Lemma 5. Suppose that t satisfies

(↵�)t <
�

2
.

Assume that in the game a black ball B
j

occurs. Let ⇡ be an (n � 1)-dimensional
a�ne subspace ⇡ passing through the centre of B

j

. Then White can play in such
a way that the black ball B

j+t

belongs to the half-space ⇧
↵,�,⇢j (x), whose boundary

is parallel to the subspace ⇡.

Taking the parameters

t = t(↵,�) =
⇠

log(�/2)
log(↵�)

⇡

, ⌧
k

= t

⇠

log k

log(1/(1� !))

⇡

(85)

(! is defined in (84)), we get the following conclusion.

Corollary. Suppose that a ball B
j

with radius ⇢
j

occurs as a black ball, and let
⇡

i

(1 6 i 6 k) be a collection of a�ne subspaces. Then White can play in such
a way that for any point x 2 B

j+⌧k the distance from x to any of the subspaces ⇡
i

(1 6 i 6 k) is greater than (⇢
j+⌧k�)/2.
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We now take the parameter k = k(↵,�, M) such that

⌧
k

log(1/(↵�))
log M

+ 2 < k. (86)

Without loss of generality we can suppose in addition to the lacunarity condi-
tion (83) that t

r+1

/t
r

6 M2 for r = 1, 2, 3, . . . . The choice of parameters (85), (86)
enables White to play in such a way that in ⌧

k

steps of the game it is possible to
‘escape’ from all the q = r

j�1

� r
j

< k families of ‘dangerous’ subspaces

{y = (y
1

, . . . , y
n

) 2 Rn : u
(r)

1

y
1

+ · · · + u(r)

n

y
n

= a}, a 2 Z, r
j

6 r < r
j+1

.

7. Spaces of lattices

Problems in Diophantine approximation are related naturally to problems of the
behavior of collections (orbits) of certain lattices. Many papers have been devoted
to the topic (see, for example, the papers [49], [54]–[57] by Margulis, Kleinbock,
and Weiss, the survey [58] by Gorodnik, and the bibliographies in these papers).
Below we consider two problems related to singular matrices.

7.1. The Davenport–Schmidt metrical theorem. As noted at the end of
§ 1.2, singular matrices ⇥ form in nm-dimensional space a set of zero Lebesgue
measure. This can be said in other words as follows. Consider the set T

µ

⇢ Rmn

of those ⇥ such that for su�ciently large t any domain of the form
⇢

x 2 Rn : max
16j6n

kL
j

(x)k 6 µ

t
, 0 < max

16i6m

|x
i

| 6 µtn/m

�

(87)

contains a non-zero integer point. It is clear that T
µ1 ⇢ T

µ2 if µ
1

< µ
2

. Then the
intersection

\

µ>0

T
µ

has zero Lebesgue measure.
A wonderful improvement of this result was obtained by Davenport and Schmidt.

Theorem 39 (Davenport and Schmidt [39], [25]). For any µ with 0 < µ < 1 the
set T

µ

has zero Lebesgue measure.

Note that T
1

= Rmn for µ = 1, by Minkowski’s convex body theorem (cited at
the beginning of the paper).

Remark. The only case considered in [29] and [30] was in fact the case with n = 1
(one linear form) or m = 1 (simultaneous approximations). Nevertheless, the proofs
are valid for the general case. In the case m = 1, n = 1 Davenport and Schmidt
found that the condition ✓ 2 T

µ

with µ < 1 forces ✓ to be a badly approximable
number, that is,

lim inf
q!1

qkq✓k > 0

(where q is an integer, of course). In other words, it means that the partial quotients
of the continued fraction expansion for ✓ are bounded. In fact, this result is based
on the use of the formula (46).
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The proof of Theorem 39 in the case n = 1 is actually based on the following
statement.

Theorem 40 (Schmidt [59]). Consider a sequence of positive integers N
⌫

increas-
ing to infinity. For a tuple ⇥ = (✓1, . . . , ✓m) 2 Rm consider the lattice

⇤(⇥, N) = A (⇥, N)Zm+1,

where the matrix A (⇥, N) has the form

A (⇥, N) =

0

B

B

B

B

@

N�1 0 0 . . . 0
0 N�1 0 . . . 0
0 0 N�1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
✓1Nm ✓2Nm ✓3Nm . . . Nm

1

C

C

C

C

A

.

Then for almost all (in the sense of Lebesgue measure) tuples ⇥ 2 Rm the sequence
of lattices

⇤(⇥, N
⌫

), ⌫ = 1, 2, 3, . . . ,

is dense in the space of lattices in Rm+1 with determinant 1.

The case m = 1 is connected with lattices of the form

⇤⇤(⇥, N) = A ⇤(⇥, N)Zn+1,

A ⇤(⇥, N) =

0

B

B

B

B

@

N�1 0 0 . . . 0
N1/n✓

1

N1/n 0 . . . 0
N1/n✓

2

0 N1/n . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N1/n✓

n

0 0 . . . N1/n

1

C

C

C

C

A

, ⇥ =

0

B

B

B

@

✓
1

✓
2

...
✓

n

1

C

C

C

A

.
(88)

In the original paper [25] the result in this case is deduced from the result in the
case n = 1 by means of transference arguments.

In the present paper we do not go into detail about the space of lattices and the
convergence in this space. We note only that the classical works on the topic
by Mahler [60], [61] are presented in [62], Chap.V. We should also note that
a series of results in Diophantine approximation are connected with the consid-
eration of special dynamical systems on the space of lattices. This approach is
developed in Kleinbock’s papers. In particular, in [57] there is a generalization of
the Davenport–Schmidt theorem discussed in this subsection.

7.2. A problem related to successive minima. Consider a lattice ⇤ ⇢ Rd

and a convex 0-symmetric body ⌦ ⇢ Rd. The quantities

µ
l

(⌦,⇤) = inf{t : t⌦ contains l linearly independent points of ⇤},
1 6 l 6 d,

are called the successive minima of the lattice ⇤ with respect to the body ⌦. The
famous second Minkowski convex body theorem (see for example [62], Chap.VIII
or [24], Chap. IV) states that

2d

d!
det⇤ 6 µ

1

(⌦,⇤) · · ·µ
d

(⌦,⇤) · meas⌦ 6 2d det⇤.



Khintchine’s singular Diophantine systems and their applications 479

In the present subsection we restrict ourselves to the problem of simultaneous
approximations: the case m = 1. The Minkowski convex body theorem cited
at the beginning of the paper can be reformulated as follows in this case. Consider
the cube E = [�1, 1]n+1

⇢ Rn+1, and for ⇥ consider the lattice ⇤⇤(⇥, N) defined
in (88). Then for any real N > 1

µ
1

�

E,⇤⇤(⇥, N)
�

6 1.

As pointed out by Schmidt [63], it is easy to see that for any k with 1 6 k 6 n
there exists a sequence of real numbers N

⌫

tending to infinity such that

µ
k

�

E,⇤⇤(⇥, N
⌫

)
�

= µ
k+1

�

E,⇤⇤(⇥, N
⌫

)
�

.

More general results and some applications to problems considered in our paper
(in particular, to transference theory) can be found in a recent paper by Schmidt
and Summerer [64]. In particular, for n = 1 we see from the Minkowski theorem
on successive minima that

1 ⌧ µ
1

�

E,⇤⇤(⇥, N)
�

µ
2

�

E,⇤⇤(⇥, N)
�

⌧ 1.

Hence, the equality
lim

N!+1
µ

1

�

E,⇤⇤(⇥, N)
�

= 0

is not possible. But in the case n > 1 it can happen that

lim
N!+1

µ
n�1

�

E,⇤⇤(⇥, N)
�

= 0

even for numbers ✓
1

, . . . , ✓
n

linearly independent together with 1. (One should
take ⇥ from Theorem 4, with a suitable choice of the function  .)

In [65] the author proved the following theorem, which answers a question posed
by Schmidt in [63].

Theorem 41. Suppose that n > 2 and 1 6 k 6 n � 1. Then there exist real
numbers ⇥ = (✓

1

, . . . , ✓
n

) such that :
• the numbers 1, ✓

1

, . . . , ✓
n

are linearly independent over Z;
• µ

k

(E,⇤⇤(⇥, N)) ! 0 as N ! +1;
• µ

k+2

(E,⇤⇤(⇥, N)) ! +1 as N ! +1.

The proof of the general case is very cumbersome. In the case k = 1 it is
very simple. In this case the ideas in the proof are close to those in the proof of
Theorem 18.

Remark. It is easy to see that the result of Theorem 41 becomes trivial without the
assumption of linear independence over Z.

In concluding this subsection we note that an improvement of Theorem 41 was
recently announced by Y. Cheung.
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8. Transference theorems

Statements that under certain Diophantine conditions on the matrix ⇥ the trans-
posed matrix t⇥ has some Diophantine properties are known as transference the-
orems. The simplest transference theorem about singular systems was mentioned
in § 6.2 (Theorem 31). Statements about the connection between homogeneous
approximations for t⇥ and inhomogeneous approximations for ⇥ (such as Theo-
rems 27–33) can also be regarded as transference theorems. Many papers have
been devoted to transference theorems. Here we give a list of types of transference
theorems. This list is by no means complete, but it does give an idea of which
mathematicians have been involved with transference theorems and what problems
they have considered. A more complete bibliography can be obtained from the
papers cited below.

• Classical results by Khintchine on ‘ordinary’ Diophantine exponents [2], [1];
the general case considered by Dyson [66]; the sharpness of Khintchine’s
bounds proved by Jarńık in [15].

• General constructions due to Mahler [67].
• Transference theorems for singular systems (papers by Jarńık [9], Apfelbeck

[29], Laurent and Bugeaud [43], [68], [69]; here we also mention a recent
paper by Schmidt and Summerer [64]).

• Transference theorems for rational number approximations (Korobov [70],
[71]); these results are connected with problems of numerical integration.

• Transference theorems connected with trigonometric sums. Such results can
be found in the paper [72] by Gel’fond and the paper [73] by Kashirskii. This
approach is based on Siegel’s paper [74].

• Transference theorems for products of linear forms (Schmidt and Wang Yuan
[75]; see also Kashirskii [73]).

• More precise results involving approximations by rational subspaces (Schmidt
[76], Laurent [43], Laurent and Bugeaud [69]).

The classical results are presented in the books by Cassels [23] (Chap.V) and by
Schmidt [24] (Chap. IV).

In the present paper we are most interested in transference theorems related to
singular systems, that is, transference theorems which deal with the behaviour of
quantities of the type

lim sup
t!+1

'(t) 
⇥

(t),

where '(t) is a certain function and  
⇥

is Jarńık’s function (20). Such results
include theorems obtained by Jarńık and Apfelbeck and recent theorems by Laurent
and Bugeaud.

But we start with formulations of classical theorems by Khintchine and Dyson.
First we recall the definition of the exponent ↵(⇥) as the supremum of those �

for which
lim sup
t!+1

t� 
⇥

(t) < +1,

and the definition of the exponent �(⇥) as the supremum of those � for which

lim inf
t!+1

t� 
⇥

(t) < +1

(we used these definitions in § 5).
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8.1. Theorems of Khintchine and Dyson. A transference theorem for the
exponents �(⇥) for a system ⇥ = (✓1, . . . , ✓m) 2 Rm and the transposed system t⇥
was proved by Khintchine in his famous paper [1].

Theorem 42. For a tuple ⇥ = (✓1, . . . , ✓m) 2 Rm the following inequalities are
valid :

�(⇥)
(m� 1)�(✓) + m

6 �(t⇥) 6 �(✓)�m + 1
m

. (89)

The result of Dyson [66] is as follows.

Theorem 43. For any dimensions m and n the following inequality is valid for
a matrix ⇥:

�(t⇥) > n�(⇥) + n� 1
(m� 1)�(⇥) + m

. (90)

A simple proof of Dyson’s result was given by Khintchine in [8].
Of course, one can deduce Theorem 42 by using Theorem 43 twice (for a row

matrix and for a column matrix).

8.2. Results of Jarńık and Apfelbeck. Jarńık’s paper [9] is devoted to trans-
ference theorems connecting the cases m = 1 and n = 1. We state some general
results (Theorems 44, 45; in the original paper [9] they are Satz 7 and Satz 8), then
we mention several corollaries. Let us consider a row vector

⇥ = (✓1, . . . , ✓m), m > 2,

and the functions
 

⇥

(t),  t
⇥

(t).

Theorem 44. Suppose that 1, ✓1, . . . , ✓m are linearly independent over Z. Assume
that the function '(t) is increasing, the function t 7! t('(t))�1 increases to infinity,
and

lim sup
t!+1

'(t) t
⇥

(t) < K,

where K is a positive constant. Then :
(i) lim sup

t!+1 tm�1'(tm) 
⇥

(t) 6 m2mK ;
(ii) if '(t) > t(m�1)/m for all su�ciently large t and ⇢(t) is the inverse function

of the function t 7! t('(t))�1, then

lim sup
t!+1

tm�2⇢

✓

t

2K

◆

 
⇥

(t) 6 mm(K + 1).

Theorem 45. Let the numbers 1, ✓1, . . . , ✓m be linearly independent over Z. Sup-
pose that the function '(t) increases to infinity +1 as t ! +1, and let ⇢(t) be the
function inverse to the function t 7! t'(m�1)/m(t). Assume that

lim sup
t!+1

'(t) 
⇥

(t) < K,

where K is a positive constant. Then :
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(i) lim sup
t!+1

✓

t

⇢(tK(m�1)/m)

◆

1/(m�1)

 t
⇥

(t) 6 3m2(K + 1);

(ii) if '(t) > tm(2m�3) and for all su�ciently large t the function '(t)t�2m+3 is
increasing and ⇢

1

(t) is the function inverse to it, then

lim sup
t!+1

✓

t

⇢
1

(tK)

◆

1/(m�1)

 t
⇥

(t) 6 3m2(K + 1).

We consider the case m = 2 separately. In this case

 t
⇥

(t)t1/2 6 1,  
⇥

(t)t2 6 1

by (18). This is why we use the statement (ii) in Theorem 44 and the statement (ii)
in Theorem 45.

Corollary 1 ([9], Satz 2). (i) For the function '(t) suppose that the function t 7!
t�1'(t) is increasing, '(t) > t2 for su�ciently large t, and

lim sup
t!+1

'(t) 
⇥

(t) < K.

Then for the function ⇢(t) inverse to '(t)

lim sup
t!+1

t

⇢(tK)
 t

⇥

(t) < 12(K + 1).

(ii) For the function '(t) suppose that the function t 7! t'(t)�1 is increasing,
'(t) > t1/2 for su�ciently large t, and

lim sup
t!+1

'(t) t
⇥

(t) < K.

Then for the function ⇢(t) inverse to the function t 7! t'(t)�1

lim sup
t!+1

⇢

✓

t

2K

◆

 
⇥

(t) < 4(K + 1).

The last corollary is much better known as a statement about Diophantine expo-
nents. By the definition of ↵(⇥), Corollary 1 leads to the following result.

Corollary 2 ([9], Satz 1). In the case m = 2

↵(⇥) =
1

1� ↵(t⇥)
. (91)

Here we should note that in [8] Khintchine gives a short and simple proof of
Jarńık’s equality (91).

We give a corollary of Theorems 44 and 45 relating to the Diophantine exponents
↵(⇥) and ↵(t⇥) in the case of arbitrary m.
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Corollary 3 ([9], Satz 3). (i) The inequalities

↵(⇥) > (m� 1) + m↵(t⇥),

↵(t⇥) > 1
m� 1

✓

1�
m

(m� 1)↵(⇥) + m

◆

=
↵(⇥)

(m� 1)↵(⇥) + m

hold in any case.
(ii) If ↵(t⇥) > (m� 1)/m, then

↵(⇥) > m� 2 +
1

1� ↵(t⇥)
.

(ii) If ↵(⇥) > m(2m� 3), then

↵(t⇥) > 1
m� 1

✓

1�
1

↵(⇥)� 2m + 4

◆

.

Of course, one can get Corollary 2 by putting m = 2 in Corollary 3.
Apfelbeck [29] generalized Theorems 44 and 45 to the case of arbitrary m and n.

Theorem 46 (Apfelbeck [29]). Let ⇥ be a non-degenerate matrix, let K be a pos-
itive number, and let '(t) be a function increasing to +1 as t ! +1. Suppose
that

lim sup
t!+1

'(t) 
⇥

(t) < K.

Then :
(i1) for m = 1

lim sup
t!+1

tn�1'

✓

tn

2(n� 1)

◆

 t
⇥

(t) 6 2(n + 1)K;

(i2) for m > 1

lim sup
t!+1

✓

tn

⇢(K(m�1)/(m+n�1)t)

◆

1/(m�1)

 t
⇥

(t) 6 (2(n + m))1/(m�1),

where ⇢(t) is the function inverse to the function

t 7!
�

tm('(t))m�1

�

1/(m+n�1);

(ii) if for m > 1 the inequality

'(t) > 2m+n�2Kt(2(m+n�2)

2
+m�2)/n

holds for su�ciently large t and the function t 7! t�(2m+n�1)/n'(t) is increasing,
then

lim sup
t!+1

✓

tn

⇢
1

(K(m�1)/(m+n�2)t)

◆

1/(m�1)

 
⇥

(t) 6 3(m + n),

where ⇢
1

(t) denotes the function inverse to the function

t 7!
�

t�(m�2)(2m+n�3)/((m�1)n)'(t)
�

(m�1)/(m+n�2)

.
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It is clear that Theorem 46 implies the following corollary concerning the
Diophantine exponents ↵(⇥) and ↵(t⇥).

Corollary ([29], Theorem 6). (i) For any m and n

↵(t⇥) > n↵(⇥) + n� 1
(m� 1)↵(⇥) + m

.

(ii) If m > 1 and

↵(⇥) >
2(m + n� 1)(m + n� 3) + m

n
,

then

↵(t⇥) > 1
m

✓

n +
n(n↵(⇥)�m)� 2n(m + n� 3)

(m� 1)(n↵(⇥)�m) + m� (m� 2)(m + n� 3)

◆

.

In [29] Apfelbeck proved also that in the case ↵(⇥) = +1 the inequality ↵(t⇥) >
n/(m � 1) (which follows from Theorem 46) is sharp (Theorem 11 in [29], whose
proof is based on a construction of singular matrices ⇥ of a special kind).

8.3. Theorems of Laurent. In [43] Laurent obtained the following result.

Theorem 47. The following statements are valid for the exponents of two-
dimensional Diophantine approximations.

(i) For a row vector ⇥ = (✓1, ✓2) 2 R2 such that dimZ⇥ = 3 the values

w = ↵(⇥), w⇤ = ↵(t⇥), v = �(⇥), v⇤ = �(t⇥) (92)

(for the definitions see § 5.3 and § 8.2) satisfy the relations

2 6 w 6 +1, w =
1

1� w⇤
,

v(w � 1)
v + w

6 v⇤ 6 v � w + 1
w

. (93)

(ii) For any four real numbers (w, w⇤, v, v⇤) satisfying (93) there exists a row
vector ⇥ = (✓1, ✓2) 2 R2 with dimZ⇥ = 3 such that (92) holds.

We would like to say a few words about Theorem 47. The first relation in (93)
is a corollary of the Minkowski Theorem (18). The second is a result of Jarńık
(Corollary 2 of Theorems 44, 45). The third one was proved by Laurent by means
of the best approximations and with the help of Jarńık’s result (91). The results of
Jarńık which we formulated as the corollary of Theorem 19 in § 5.1 and the corollary
of Theorem 21 in § 5.3 (in the respective cases m = 1, n = 2 and m = 2, n = 1, of
course) can be obtained from the statement (i) of Theorem 47. The statement (ii)
of Theorem 47 shows that, in particular, the corollaries of Jarńık’s theorems in
§ 5.1 and § 5.3 are sharp (best possible) in the cases m = 1, n = 2 and m = 2,
n = 1. Moreover, it follows from Theorem 47 that the pairs (↵(⇥),�(⇥)) and
(↵(t⇥),�(t⇥)) can take all admissible (that is satisfying (93)) values.

A generalization of the third inequality in (93) to the case of one linear form
in m variables was obtained by Laurent in [68]. We give it here.
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Theorem 48. For a row vector ⇥ = (✓1, . . . , ✓m) with m > 2, if dimZ ✓ = m + 1,
then

(↵(⇥)� 1)�(⇥)
((m� 2)↵(⇥) + 1)�(⇥) + (m� 1)↵(⇥)

6 �(t⇥)

6 (1� ↵(t⇥))�(⇥)�m + 2� ↵(t⇥)
m� 1

. (94)

By Jarńık’s equality (91), in the case m = 2 the inequalities (94) coincide with
the third relation in (93).

From (18) we observe that

↵(⇥) > m, ↵(t⇥) > 1
m

. (95)

In the case when both inequalities in (95) turn into equalities we see that Laurent’s
inequalities (94) coincide with Khintchine’s inequalities (89). But if the inequali-
ties (95) are strict, then the inequalities (94) are stronger than the inequalities (89).
Thus, Theorem 48 asserts that Theorem 42 can be improved if the matrix ⇥ is sin-
gular. The author does not know any similar improvement of Dyson’s Theorem 43
connected with singular matrices ⇥. It is clear that such a result must hold. Certain
improvements of Laurent’s results are due to Laurent and Bugeaud [69].

9. Hausdor↵ dimension of sets of singular systems

Not very much is known about the exact values and bounds for the Hausdor↵
dimension of sets of singular matrices. We gather some such results below. Sev-
eral problems concerning the determination of Hausdor↵ dimensions were posed by
Laurent and Bugeaud in [77]. To the author’s knowledge, most papers deal with
the case n = 1, and only estimates of the Hausdor↵ dimension are obtained. An
exception is a paper by Cheung in which the following result is obtained.

Theorem 49 (Cheung [78]). The Hausdor↵ dimension of the set of singular sys-

tems (in the sense of Khintchine’s definition for n = 2, m = 1) of the form
✓

✓
1

✓
2

◆

is equal to 4/3.

From the transference principle it follows that the result of Theorem 49 remains
true for singular systems (✓1, ✓2) with n = 1 and m = 2.

Below we shall consider sets E
m

(↵) consisting of singular vectors⇥ = (✓1, . . . , ✓m)
(that is, the case of arbitrary m > 2 and n = 1) and defined as follows:

E
m

(↵) =
n

⇥ 2 Rm : lim
t!+1

t↵ 
⇥

(t) = 0
o

.

We now give the sharpest upper and lower bounds for Hausdor↵ dimension known
to the author.

The following result is due to Baker [79]. It improves earlier results of Baker [80],
Yavid [81], and Rynne [82] (Yavid was the first to construct a counterexample to
Baker’s conjecture in [80] stating that the Hausdor↵ dimension of the set of singular
linear forms should be very small, but Yavid’s result was quantitatively improved
by Rynne).
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Theorem 50 (Baker [79]). Suppose that m > 3 and ↵ > m. Then the Hausdor↵
dimension of the set E

m

(↵) has the lower bound

HD E
m

(↵) > m� 2 +
m

↵
.

An upper bound was obtained by Rynne [83], who improved Baker’s result
in [80].

Theorem 51 (Rynne [83]). Suppose that m > 3 and ↵ > m. Then the Hausdor↵
dimension of the set E

m

(↵) has the upper bound

HD E
m

(↵) 6 m� 2 +
2m + 2
↵+ 1

.

In the case m = 2, both of the best known bounds (upper bound in [79], lower
bound follows from [80]) were due to Baker for some time.

Theorem 52 (Baker [80], [79]). The Hausdor↵ dimension of the set E
2

(↵) has the
bounds

2
↵

6 HDE
2

(↵) 6 6
↵+ 1

.

The lower bound in this theorem seems to be the best one so far. Using Jarńık’s
equality (91), the inequality (58) in the corollary of Theorem 19 (also due to Jarńık),
and a particular case (n = 2, m = 1) of a result of Dodson in [84] (Theorem 53
below), Bugeaud and Laurent deduce in [77] the inequality

HDE
2

(↵) 6 3↵
↵2

� ↵+ 1
,

which is stronger than the upper estimate in Theorem 52. More precisely, we should
say that the following inequality was proved in [77]:

HD{⇥ 2 R2, ↵(⇥) > ↵} 6 3↵
↵2

� ↵+ 1
.

We now give the general result in [84] which we used above. Recall that the expo-
nent �(⇥) was defined as the supremum of those �, for which

lim inf
t!+1

t� 
⇥

(t) < +1.

Theorem 53. For any ⌧ > m/n the Hausdor↵ dimension of the set

W
m,n

(⌧) = {⇥ : �(⇥) > ⌧}

is equal to

HD W
m,n

(⌧) = (m� 1)n +
m + n

⌧ + 1
.

We give two simple corollaries of the above results. Theorems 50 and 51 imply
the following result about the Hausdor↵ dimension of the set

E
m

(1) =
\

↵>m

E
m

(↵).
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Corollary 1. The Hausdor↵ dimension of the set E
m

(1) is

HD E
m

(1) = m� 2.

We note also that Theorem 50 implies the following statement.

Corollary 2. The Hausdor↵ dimension of the set of singular systems (in the sense
of Khintchine’s definition) in the case n = 1 and for arbitrary m > 2 is bounded
from below by m� 1.

In concluding this section we cite the books [85] by Bernik and Mel’nichuk and
[86] by Bernik and Dodson dealing with Diophantine approximation and Hausdor↵
dimension.

10. Approximations with non-negative integers

10.1. Two-dimensional approximations. Put ⌧ = (1+
p

5 )/2. In [87] Schmidt
obtained the following result.

Theorem 54. Let the numbers ✓1 and ✓2 be linearly independent together with 1
over Z. Then there is a sequence of two-dimensional integer vectors (x

1

(i), x
2

(i))
such that :

1) x
1

(i), x
2

(i) > 0;
2) k✓1x

1

(i) + ✓2x
2

(i)k(max{x
1

(i), x
2

(i)})⌧ ! 0 as i ! +1.

A well-known conjecture (see [87], [63]) supposes that the exponent ⌧ in Theo-
rem 54 can be replaced by 2� " for arbitrarily small ". This conjecture has not yet
been proved, but there are several results by several mathematicians which improve
and generalize Schmidt’s result (for example, see [88]–[90]). Schmidt’s proof uses
the assertion of linear independence of the best approximations of a linear form
(Theorem 7, m = 2, n = 1), and actually involves the consideration of two cases
depending on the type of singularity of the system ✓1, ✓2 (n = 1, m = 2). These
two cases are as follows. Considering the set of indices ⌫ for which the vectors
z
⌫�1

, z
⌫

, z
⌫+1

are linearly independent, we suppose in the first case that there are
infinitely many ⌫ such that ⇣

⌫

6 M
1/⌧

⌫

M
�⌧/(⌧�1)

⌫+1

. In the second case we suppose
that there exist infinitely many ⌫ such that the opposite inequality holds.

In [91] the author considers the case of a badly approximable system ✓1, ✓2. We
state the result in [91]. For a real number � > 2 let

g(�) = ⌧ +
2⌧ � 2
⌧2� � 2

.

Obviously g(�) is strictly decreasing, g(2) = 2, and lim
�!+1 g(�) = ⌧ . For positive

� let

C(�) = 218�(⌧�⌧2
)/(⌧

2
��2).



488 N. G. Moshchevitin

Theorem 55. Suppose that the real numbers ✓1 and ✓2 are badly approximable in
the sense that for some � 2 (0, 1) and some � > 2 the inequality

k✓1m
1

+ ✓2m
2

k > �
(max{|m

1

|, |m
2

|})�
(96)

holds for all integer vectors (m
1

, m
2

) 2 Z2

\ {(0, 0)}. Then there exists an infinite
sequence of two dimensional integer vectors (x

1

(i), x
2

(i)) such that :
1) x

1

(i), x
2

(i) > 0;
2) k✓1x

1

(i) + ✓2x
2

(i)k(max{x
1

(i), x
2

(i)})g(�) 6 C(�) for all i.

We do not dwell on the proof of this theorem. It follows original ideas of Schmidt
and is presented in su�cient detail in [91].

10.2. Linear forms in k > 2 variables. In the case k > 3 a linear form in k
variables may not take small values for positive x

j

in general. Here we give a result
due to Schmidt in [87].

Theorem 56. There exists a vector ⇥ = (✓
1

, . . . , ✓
k

), k > 3, such that :
• dimZ⇥ = k + 1;
• for any " > 0 there exists a c(") > 0 such that for all positive integers

x
1

, . . . , x
k

k✓
1

x
1

+ · · · + ✓
k

x
k

k > c(")
⇣

max
16i6k

|x
i

|

⌘�2�"
.

The proof of Theorem 56 uses a result of Davenport and Schmidt in [92] which
ensures the existence of real numbers with anomaly simultaneous approximations.

Theorem 57. Suppose that n > 2 and let  (t) be a positive function of the real
variable t. Then there exists a vector ⇥ = (✓

1

, . . . , ✓
n

) such that :
• dimZ⇥ = n + 1;
• for su�ciently large t there is a positive integer q 6 t such that

kq✓
j

k 6  (t) (97)

for all 1 6 j 6 n with the possible exception of one index j
0

= j
0

(t).

We note that in the case n > 2 and  (t) = O(t�1) (as t ! +1) one cannot
ensure the inequalities (97) for all 1 6 j 6 n. This would contradict Theorem 17.

Following Schmidt [87], we show that Theorem 57 implies Theorem 56 by means
of simple transference arguments. We take n = k � 1 and  (t) = e�t, and for
the numbers ✓

1

, . . . , ✓
k�1

in Theorem 57 we find a number ✓
k

such that with some
positive constant c

1

(") the inequality

k✓
i

u + ✓
k

vk > c
1

(")(|u| + |v|)�2�", 1 6 i 6 k � 1,

is valid for all integers u and v with v 6= 0. (Standard arguments involving the
Borel–Cantelli lemma show that it is valid for almost all numbers ✓

k

. These argu-
ments are close to those used in §§ 2.2, 2.3 above.)

For an integer point (x
1

, . . . , x
k

) with su�ciently large M = max
16i6k

|x
i

| we
now put t = (log M)2 and choose q with 1 6 q 6 t to satisfy the conclusion of
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Theorem 57. Without loss of generality assume that j
0

(t) = 1. Hence if x
k

6= 0,
then

k✓
1

x
1

+ · · · + ✓
k

x
k

k > q�1

k✓
1

qx
1

+ · · · + ✓
k

qx
k

k

> q�1

�

k✓
1

qx
1

+ ✓
k

qx
k

k �M(k✓
2

qk+ · · · + k✓
k�1

qk)
�

> q�1

✓

c
1

✓

"

3

◆

(qM)�2�"/3

� kMe�t

◆

> M�2�".

Theorem 56 is proved.

11. Kozlov’s problem

Consider real numbers ⇥ = (✓1, . . . , ✓m) linearly independent over Z and a real-
valued function f(x

1

, . . . , x
m

) that is periodic in each variable x
i

with period 1
and is su�ciently smooth (for example, continuous). Everywhere in this section we
assume the zero mean value condition

Z

1

0

· · ·

Z

1

0

f(x
1

, . . . , x
m

) dx
1

· · · dx
m

= 0. (98)

According to a famous theorem of Weyl [93], for a continuous function f and for
any initial phase y = (y

1

, . . . , y
m

) 2 Rm one has

I(T,y) = I [f,⇥](T,y) =
Z

T

0

f(✓1t + y
1

, . . . , ✓mt + y
m

) dt = o(T ), T ! +1.

An interesting problem about recurrence and oscillation of the integral I(T,y) was
posed by Kozlov.

We say that the integral I(T,y) oscillates (for a given value of the initial phase y)
if both of the sets

T
+

= {T 2 R
+

| I(T,y) > 0}, T� = {T 2 R
+

| I(T,y) < 0}

are unbounded.
We say that the integral I(T,y) has the recurrence property (for a given initial

phase y) if
lim inf
T!+1

|I(T,y)| = 0.

The continuous setting described above has a discrete analogue.
Consider a collection of real numbers ⇥ = (✓1, . . . , ✓m) linearly independent

together with 1 over Z. Suppose that the real function F (x
1

, . . . , x
m

) is su�ciently
smooth and 1-periodic in each variable x

i

. Assume the zero mean value condition
Z

1

0

· · ·

Z

1

0

F (x
1

, . . . , x
m

) dx
1

· · · dx
m

= 0. (99)

Weyl’s theorem on equality of the space mean value and time mean value cited above
asserts in the discrete situation that for any initial phase y = (y

1

, . . . , y
m

) 2 Rm

S(Q,y) = S[F,⇥](Q,y) =
Q

X

s=1

F (✓1s + y
1

, . . . , ✓ms + y
m

) dt = o(Q), Q ! +1.
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The definitions of the oscillation property and the recurrence property for the
sum S(Q,y) as Q ! +1 are analogous to those for the integral I(T,y).

For a function f(x
1

, . . . , x
m

) of m variables one can consider the function
F

z

(y
1

, . . . , y
m�1

) of m� 1 variables y
1

, . . . , y
m�1

(here z is treated as a parameter)
defined as

F
z

(y
1

, . . . , y
m�1

) =
Z

1/✓

m

0

f(✓1t + y
1

, . . . , ✓m�1k + y
m�1

, ✓mt + z) dt,

and the new set of frequencies ⇥⇤ = (✓1/✓m, . . . , ✓m�1/✓m) (under the specified
conditions these numbers are linearly independent together with 1 over Z). Then
the recurrence or oscillation property of the sum S[Fz,⇥](Q,y) with some value of z
and with some initial phase y = (y

1

, . . . , y
m�1

) implies the recurrence or oscillation
property of the integral I(T,x) for the corresponding value of the initial phase x.
In general the converse statement may not be true.

11.1. Peres’ lemma and Halász’ theorem. In this subsection we state two
general results from ergodic theory and discuss their applications to the problem
under consideration.

By a dynamical system here we mean a probability space (⌦,A , µ) with some
µ-preserving ergodic transformation T of the set ⌦ into itself (the basic notions of
ergodic theory can be found in [94]). The Birkho↵ ergodic theorem says that for
an integrable function g from ⌦ to R

1
Q

Q

X

s=1

g(T sx) !
Z

⌦

g dµ, Q ! +1,

for almost all x 2 ⌦.
The following statement is known as Peres’ Lemma.

Lemma 6 (Peres [95]). Suppose that ⌦ is compact and T is continuous. Then for
any continuous function g from ⌦ to R there exists an x 2 ⌦ such that

1
Q

Q

X

s=1

g(T sx) >
Z

⌦

g dµ.

In our problem Lemma 6 has the following consequence.

Corollary. Suppose that ⇥ consists of frequencies linearly independent together
with 1 over Z. Assume that F (x

1

, . . . , x
m

) is a continuous function with period 1
in each variable and zero mean value. Then there exists a y 2 [0, 1)m such that

S[F,⇥](Q,y) > 0 8Q 2 N.

An analogous statement was obtained for the integral I [f,⇥](T,y) by Bohl [96].
A stronger result is due to Kozlov [97], [98].

Theorem 58 (Kozlov [97], [98]). (i) Let the frequencies ✓1, . . . , ✓m be linearly inde-
pendent over Z, and let the periodic continuous function f have zero mean value.
Then there exists a y 2 [0, 1)m such that

I [f,⇥](T,y) > 0 8T 2 R
and moreover, f(y) = 0.
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(ii) In the case when the frequencies ✓1, . . . , ✓m are linearly dependent over Z
there exist at least two di↵erent points y

1

,y
2

2 [0, 1)m satisfying the conclusion of
the statement (i).

We now formulate one of the results in the paper [99] of Halász, relating to the
behavior of Birkho↵ sums for a function g integrable over ⌦.

Theorem 59 (Halász [99]). For any integrable g the di↵erence

Q

X

s=1

g(T sx)�Q

Z

⌦

g dµ (100)

changes sign in a weak sense infinitely many times for almost all x 2 ⌦.

A quantity is said to change sign in a weak sense infinitely many times if it
cannot eventually be strictly positive or strictly negative.

Corollary. For any tuple ⇥ of frequencies linearly independent together with 1
over Z and for any integrable function F (x

1

, . . . , x
m

) 1-periodic in each variable and
with zero mean value, the sum S[F,⇥](Q,y) changes sign in a weak sense infinitely
many times for almost all values of the initial phase y.

11.2. Individual recurrence. In the case m = 2 the recurrence property of
the integral I [f,⇥](T,y) for a periodic function f(x

1

, x
2

) 2 C2([0, 1]2) with zero
mean value was proved by Kozlov himself for an arbitrary pair ⇥ = (✓1, ✓2) of
frequencies with ✓1/✓2 /2 Q and for an arbitrary initial phase (y

1

, y
2

) in [97], [98].
In these papers he noted that in the case m = 2 a more precise statement about the
recurrence property of the integral I(T,y) is true: namely, there exists a sequence
of positive integers T

⌫

such that simultaneously

max
16i62

k✓iT
⌫

k ! 0, I(T
⌫

,y) ! 0, ⌫ ! +1. (101)

He also observed that if f(y
1

, y
2

) 6= 0, then the ‘strong recurrence property’ (101)
implies that the integral I(T,y) oscillates for this value y = (y

1

, y
2

) of the initial
phase.

These results of his were improved by Sidorov [100] (detailed comments will be
given in the next subsection). In the case of an arbitrary dimension m, results
on oscillation and recurrence were obtained by Konyagin for an odd function f
(see [101]) and by the author in the general case (see [102], [103]). Here we give
these results and make some comments.

First of all we state two results in [102] and [103].

Theorem 60. Let m > 2, and let the function f belong to the class Cw([0, 1]m)
with

w = w(m) = [exp(20m log m)]. (102)

Assume the zero mean value condition (98). Then for any tuple ⇥ = (✓1, . . . , ✓m)
of frequencies linearly independent over Z and for any initial phase y the integral
I(T,y) has the recurrence property.
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Theorem 61. Under the conditions of Theorem 60 suppose that for the initial
phase y = (y

1

, . . . , y
m

)
f(y

1

, . . . , y
m

) 6= 0.

Then the integral I(T,y) oscillates.

Theorem 60 is proved in the papers [102] and [103]. However, in these papers the
theorem is formulated with stronger conditions on the smoothness exponent w(m).
Nevertheless, the proof in [102] and [103] works for the exponent (102) in
the theorem as stated above. Unfortunately, an explicit calculation is found only
in the author’s D.Sc. thesis [104], but it can easily be reconstructed. Though
Theorem 61 is not a direct corollary of Theorem 60, its proof is almost identical to
that of Theorem 60. A precise argument is also given in [104].

From Theorem 60 we deduce the following statement as an obvious corollary.

Corollary. Suppose that a function F (x) with zero mean value (99) belongs to the
class Cw(m)([0, 1]m). Then for any frequencies ⇥ = (✓1, . . . , ✓m) that are linearly
independent together with 1 over Z and for any initial phase x,

lim inf
Q!+1

|S(Q,x)| < +1.

It is clear that the corollary does not assert the recurrence property for the sum
S(Q,y). This question seems to be open for S(Q,y).

Here we should note that the proofs of Theorems 60 and 61 are connected with
the investigation of the distribution of the best Diophantine approximations of a lin-
ear form (the case n = 1) and with a detailed analysis of the oscillation of harmonics
in the Fourier series expansion for the function f .

We now state Konyagin’s result in [101].

Theorem 62. Let m > 3. Suppose that a periodic function f belongs to the class
Cw1([0, 1]m), where

w
1

= w
1

(m) = 3m · 2m�1. (103)
Assume the zero mean value condition (98), and in addition suppose that for all x

f(�x
1

, . . . ,�x
m

) = �f(x
1

, . . . , x
m

). (104)

Then the integral I(T,0) has the recurrence property.

Note that w
1

(m) < w(m), and hence in Konyagin’s theorem dealing with an odd
function the smoothness condition on f is weaker than in Theorem 60.

We remark that Theorem 62 can be generalized in the following way. Instead of
one function f satisfying the conditions of Theorem 62 we can consider a finite col-
lection of functions f

1

, . . . , f
r

such that each satisfies the conditions of Theorem 62.
Then

lim inf
T!+1

X

16j6r

|I [fj ,⇥](T,0)| = 0.

The proof of this assertion is a direct generalization of the proof in [101].
We now make a few remarks about the smoothness of f su�cient for the recur-

rence property.
Using a development of Treshchev’s ideas and a generalization of an example of

Poincaré in [106], [107], the author (see [105]) proved the following statement.
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Theorem 63. Suppose that the tuple ⇥ = (✓1, . . . , ✓m) of frequencies is badly
approximable in the sense that for some positive number � = �(⇥) and all non-zero
integer vectors k = (k

1

, . . . , k
m

) 2 Zm

|k
1

✓1 + · · · + k
m

✓m

| > � ·

⇣

max
16i6m

|k
i

|

⌘

1�m

.

Then there exists a function f [⇥](x) in Cm�2([0, 1]m) \ Cm�1([0, 1]m) that is
1-periodic in each variable, has zero mean value, and is such that

lim
T!+1

I [f

[⇥]
,⇥](T,0) = +1.

We note that every badly approximable tuple consists of numbers linearly inde-
pendent over Z.

On the other hand, Konyagin constructed a certain singular system ⇥ of fre-
quencies (see [101]) to get the following result.

Theorem 64. Let m > 4, and let

w
3

= w
3

(m) =


2m�1(m� 2)m�2

(m� 1)m�1

�

� 1.

Then there exist a periodic function f 2 Cw3([0, 1]m) and a tuple of frequencies
⇥ = (✓1, . . . , ✓m) consisting of numbers linearly independent over Z such that (104)
holds and

lim
T!+1

I [f

[⇥]
,⇥](T,0) = +1.

We note that for m > 9 Theorem 64 gives an example of a function f without
the recurrence property of the integral I [f

[⇥]
,⇥](T,0) and yet more smooth than the

function in Theorem 63.
In [102] there is a negative result on the existence of simultaneous recurrence for

the integrals in the general case. It is also related to singular systems ⇥. We give
it here.

Theorem 65. Suppose that the function �(t) decreases to zero (arbitrarily fast).
Then there exist two real-valued functions

f
j

(x
1

, x
2

, x
3

) =
X

(k1,k2,k3)2Z3\{0}

f
j;k1,k2,k3 exp

�

2⇡i(k
1

x
1

+ k
2

x
2

+ k
3

x
3

)
�

(j = 1, 2) such that their Fourier coe�cients have the estimates

|f
j;k1,k2,k3 | 6 �

⇣

max
16j63

|k
j

|

⌘

8 k 2 Z3, j = 1, 2,

but at the same time for some triple ⇥ = (✓1, ✓2, ✓3) of real numbers linearly inde-
pendent over Z

lim inf
T!+1

X

16j62

|I [fj ,⇥](T,0)| = +1.

We refer here to the author’s paper [108], where a partial solution of the problem
was given in the case m = 3.
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11.3. Uniform recurrence. By uniform recurrence we mean recurrence of the
quantities

J(T ) = J [f,⇥](T ) = sup
y2Rm

|I [f,⇥](T,y)|, R(Q) = R[f,⇥](Q) = sup
y2Rm

|S[F,⇥](Q,y)|.

Sidorov’s result cited above deals with just this kind of recurrence. Here we give
the exact formulation.

Theorem 66 (Sidorov [100]). Let m = 1. Let F (x) be a 1-periodic absolutely con-
tinuous function of the real argument x, and let ✓ /2 Q. Then the sum S[F,⇥](Q, y)
has the uniform recurrence property, that is,

lim inf
Q!+1

R(Q) = 0.

Sidorov’s proof is based on continued fractions arguments.
As was observed in [109], the case m > 1 di↵ers radically from the case m = 1.

In [109] the author proved that uniform recurrence can be absent even in the case
m = 2 and even for smooth F (x

1

, x
2

). For this purpose he used a singular system
(✓

1

, ✓
2

) and re-proved Khintchine’s theorem (Theorem 1, 1926), which he did not
know about at the time. Here we give a more general result of Kolomeikina and
the author in [110], along with the main auxiliary result there on the existence of
singular systems ⇥ of a special kind with n = 1.

Consider a Fourier series expansion

F (x
1

, . . . , x
m

) =
X

(k1,...,km)2Zm\{0}

F
k1,...,km exp

�

2⇡i(k
1

x
1

+ · · · + k
m

x
m

)
�

.

By the spectrum of the function F we mean the set

spec F = {(k
1

, . . . , k
m

) 2 Zm : F
k1,...,km 6= 0}.

The following result shows that there may be no uniform recurrence property
even under a very strong smoothness condition on the function F .

Theorem 67. Suppose that a function F with period 1 in each variable belongs to
the class C1([0, 1]m) and satisfies (99).

Consider the following two conditions.
(A) For any positive-valued function �(t) = o(t), t ! +1, there exists a tuple

⇥ = (✓1, . . . , ✓m) of real numbers linearly independent together with 1 over Z such
that

R[F,⇥](Q) > �(Q)

for su�ciently large Q.
(B) There exist an R > 0 and a non-zero integer point p = (p

1

, . . . , p
m

) 2 Zm

such that spec F ⇢ B(R) [L (p), where B(R) is the ball in Rm with zero centre
and radius R, and L (p) is the line in Rm passing through zero and p.

Then the condition (A) is equivalent to the negation of the condition (B).
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The proof of Theorem 67 is based on the following lemma.

Lemma 7. Assume the negation of the condition (B) in Theorem 67. Then for any
function  (t) decreasing to zero as t ! +1 there exist a vector ⇥ = (✓1, . . . , ✓m)
of numbers linearly independent together with 1 over Z and an infinite sequence of
integer vectors

(k
1,⌫

, . . . , k
m,⌫

) 2 spec F, ⌫ = 1, 2, 3, . . . ,

such that for all ⌫

k✓1k
1,⌫

+ · · · + ✓mk
m,⌫

k 6  
⇣

max
16i6m

|k
i,⌫+1

|

⌘

. (105)

It is clear that the condition (105) looks like the condition (19) in the equivalent
definition of  -singularity. In some sense Lemma 7 deals with the ‘best approxima-
tions in the set spec F ’.

We note that a result on uniform recurrence can easily be obtained if the vector ⇥
is not  -singular (for a certain choice of  ). The following statement holds.

Proposition 4. Suppose that the function�(t) decreases to zero as t! +1 and
that the series

+1
X

k1,...,km=�1
�
⇣

max
16i6m

|k
i

|

⌘

max
16i6m

|k
i

|

converges. Assume that the Fourier coe�cients of the function F (x
1

, . . . , x
m

) have
the upper estimate

|F
k1,...,km | 6 �

⇣

max
16i6m

|k
i

|

⌘

and that the zero mean condition (99) holds. Consider the function

�
1

(t) =
X

(k1,...,km): max16i6m |ki|>t

�
⇣

max
16i6m

|k
i

|

⌘

,

which tends to zero.
Let n = 1 and suppose that the vector ⇥ = (✓1, . . . , ✓m) of real numbers linearly

independent together with 1 over Z does not form a  -singular system for any
function  (t) such that

 (t)
�

�
1

(t)
��1/m

! +1, t ! +1.

Then there exists a sequence of integers q
µ

(µ = 1, 2, 3, . . . ) such that

R[F,⇥](q
µ

) ! 0, max
16i6m

k✓iq
µ

k ! 0, µ ! +1.

Here we make a comment. For example, the conditions of Proposition 4 will be
satisfied under the following assumptions: the Fourier coe�cients of F satisfy the
condition

|F
k1,...,km | 6 �

⇣

max
16i6m

|k
i

|

⌘��
8k 2 Zm

\ {0}
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for some � > 0 and � > (m + 1)m, and the vector ⇥ satisfies

lim sup
t!+1

 
⇥

(t)t�/m�1 = +1.

It is clear that Proposition 4 ensures the ‘strong recurrence property’ (that is,
both assertions in (101) hold simultaneously). Moreover, it ensures the uniform
recurrence property. It is obvious from the proof that the analogue of Proposition 4
is valid for the simultaneous recurrence property of integrals for any finite collection
of functions. From Proposition 4 it becomes clear that in the proofs of Theorems 60
and 61 the main di�culty is related to the consideration of the case when ⇥ is
a  -singular system with a function  rapidly decreasing to zero.

Proof of Proposition 4. If  -singularity fails, then by Proposition 1 there exists an
infinite subsequence ⌫

µ

such that for the best approximations we have

⇣
⌫µ ·

�

�
1

(M
⌫µ+1

)
��1/m

! +1, µ ! +1. (106)

It is clear that

�
⌫µ = ⇣

⌫µ · �
1

(M
⌫µ+1

) ! 0, µ ! +1.

Put
Q

µ

=
�

⇣
⌫µ · �

1

(M
⌫µ+1

)
��m/(m+1)

.

By Dirichlet’s theorem let q
µ

be a positive integer such that

1 6 q
µ

6 Q
µ

, max
16i6m

k✓
i

q
µ

k 6 Q�1/m

µ

.

Then
q
µ

! +1, max
16i6m

k✓
i

q
µ

k ! 0, µ ! +1.

On the other hand,

R[F,⇥](q
µ

) 6
X

k2Zm\{0}

|F
k1,...,km |

�

�

�

�

qµ
X

s=1

exp
�

2⇡i(k
1

✓1 + · · · + k
m

✓m)s
�

�

�

�

�

⌧

X

k: maxi |ki|<M⌫µ+1

�
⇣

max
i

|k
i

|

⌘max
i

|k
i

| · max
i

k✓
i

q
µ

k

kk
1

✓1 + · · · + k
m

✓m

k

+ q
µ

�
1

(M
⌫µ+1

)

⌧

1

⇣
⌫µQ

1/m

µ

+ Q
µ

�
1

(M
⌫µ+1

) = 2
⇣

⇣m

⌫µ

�

�
1

(M
⌫µ+1

)
��1

⌘�1/(m+1)

! 0,

µ ! +1.

In the last inequality we used (106). The proposition is proved.
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12. Singular systems of a special kind

Among the results discussed in this paper there are existence theorems for sin-
gular systems of a special kind. As examples we mention Theorem 6, 34, 12, 13, 41
and Lemma 7.

In the present section we introduce two more results of this type.
We make two remarks before formulating the first result. First of all, in the case

n = 1, m = 2 (as pointed out in § 2 and § 5.3) there exist infinitely many consecutive
triples of linearly independent best approximation vectors. Therefore, for infinitely
many values of ⌫ we have

⇣
⌫

> 1
6M

⌫+1

M
⌫+2

.

Second, we note that in the author’s paper [35] the following result was announced:
for n = 1 and m > 2 and for a given function  (t) decreasing to zero (arbitrarily
fast) as t ! +1, there exist vectors ⇥ 2 Rm such that dimZ⇥ = m + 1 and

⇣
⌫

6  (M
⌫+m�1

).

There is a complete proof in [33].
This result can be essentially improved.

Theorem 68. Let m > 3. Suppose that the function  (t) decreases to zero (arbi-
trarily fast) as t ! +1. Let ⌧(⌫), ⌫ = 1, 2, 3, . . . , be an increasing sequence of
positive integers. Then there exist vectors ⇥ 2 Rm such that dimZ⇥ = m + 1 and

⇣
⌫

6  (M
⌫+⌧(⌫)

).

We give a sketched proof of the theorem in the case m = 3.
For vectors w, e 2 R3 (here e is always a vector of unit length) and positive

numbers ⌘ and � we define a ball sector

B
⌘,�

(w, e) =
⇢

⇥ : |⇥�w| 6 ⌘,

�

�

�

�

⇥�w
|⇥�w|

� e
�

�

�

�

6 �

�

(107)

(here | · | stands for the Euclidean norm, but the type of norm is not important).
For a vector w = (w1, w2, w3) 2 R3 let w = (w1, w2, w3, 1) 2 R4. We identify the
space R3 with the a�ne subspace {(x, y) : y = 1} ⇢ R4. To prove Theorem 68 we
need the following lemma.

Lemma 8. Consider a three-dimensional completely rational linear subspace
⇧ ⇢ R4, dim⇧ = 3, with normal vector w, and let ⇡

1

,⇡
2

⇢ ⇧ be two linear
subspaces with dim⇡

1

= dim⇡
2

= 2. Let a < b < c be positive integers and let the
vectors

z
⌫

= (x
⌫

, y
⌫

) = (x
1,⌫

, x
2,⌫

, x
3,⌫

, y
⌫

) 2 Z4, 1 6 ⌫ 6 c,

be such that :
(i) z

a

, z
a+1

, . . . , z
b�1

, z
b

2 ⇡
1

;
(ii) z

b

, z
b+1

, . . . , z
c�1

, z
c

2 ⇡
2

;
(iii) z

b�1

, z
b

, z
b+1

are linearly independent.
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For some positive numbers ⌘ and � and for a vector e 2 R3 suppose that e is
orthogonal to ⇡

2

, and that for any ⇥ 2 B
⌘,�

(w, e) with dimZ⇥ = 4 the first c best
approximation vectors are just the vectors z

⌫

, 1 6 ⌫ 6 c.
Let d > c be an integer.
Then there exist a completely rational linear subspace ⇧⇤ with dim⇧⇤ = 3 and

with normal vector w⇤, a subspace ⇡
3

⇢ ⇧⇤ with dim⇡
3

= 2, and a sequence of
integer vectors

z
c+1

, . . . , z
d�1

, z
d

2 ⇡
3

such that z
c�1

, z
c

, z
c+1

are linearly independent, and there are positive numbers
⌘⇤ and �⇤ and a vector e⇤ 2 R3 such that e⇤ is orthogonal to ⇡

3

and for any
⇥ 2 B

⌘⇤,�⇤(w⇤, e⇤) ⇢ B
⌘,�

(w, e) with dimZ⇥ = 4 the first d best approximation
vectors are just the vectors z

⌫

, 1 6 ⌫ 6 d.

We now give a sketched proof of Lemma 8. The integer lattice Z4 is decomposed
into three-dimensional a�ne sublattices ⇧

r

(levels) parallel to the subspace ⇧:

Z4 =
[

r2Z
⇧

r

.

First of all we take an integer point z
c+1

from the level ⇧
1

or ⇧�1

which is a ‘neigh-
bouring’ level to ⇧

0

= ⇧ (the precise choice of this level depends on the direction
of the vector e). We can assume that the absolute value

M
c+1

= max
i=1,2,3

|x
i,c+1

|

is much bigger than all the parameters in the inductive assumption. Then define

⇧⇤ = span(z
c�1

, z
c

, z
c+1

), ⇡
3

= span(z
c

, z
c+1

)

and let w⇤ be the normal vector to ⇧⇤.
The vectors z

c

, z
c+1

lie in the two-dimensional completely rational subspace ⇡
3

.
We can find a sequence of vectors z

c+2

, . . . , z
d

2 ⇡
3

\Z4 that form the sequence of
all best approximations (with norm greater than |z

c+1

|•) for the last vector z
d

with
respect to the lattice ⇡

3

\ Z4 with the induced norm. Since ⇧⇤ � ⇡
3

3 z
c

, . . . , z
d

,
by taking small ⌘⇤ and �⇤ (dependent on ⇢(⇧⇤) > 0 and M

d

= max
i=1,2,3

|x
i,d

|) we
get the assertion of Lemma 8. In this procedure the direction of the vector e⇤ is
chosen in such a way that the vectors z

d�1

and z
d

(but not the vectors z
d

� z
d�1

and z
d

) are the last best approximations from the first d best approximations for
any ⇥ in the constructed neighbourhood. (Such a construction was developed by
German in [111], [112].)

To prove Theorem 68 we must use Lemma 8 in the following way. We first
enumerate all three-dimensional completely rational subspaces of R4. Then we start
an inductive process for constructing embedded neighbourhoods of the form (107).
The sequence of indices ⌫

k

is defined to satisfy ⌫
k+1

= ⌫
k

+ ⌧(⌫
k

). At each step
Lemma 8 is used with a = ⌫

k�1

, b = ⌫
k

, c = ⌫
k+1

. In this process it is necessary
in addition to choose ⌘⇤ small enough that

⌘⇤ <
 (M

d

)
8M

b

.
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Then for b 6 ⌫ 6 c we get that ⌫ + ⌧(⌫) 6 c + ⌧(c) = d and

⇣
⌫

6 ⇣
b

<  (M
d

) 6  (M
⌫+⌧(⌫)

).

Moreover, at each step we must avoid the completely rational subspace with the
same number as the number of the step.

The second result we mention in this section was announced in [34].

Theorem 69. Let n = 1 and m > 2. Then for any function  (t) decreasing
to zero (arbitrarily fast) as t ! +1 there exists a  (t)-singular ⇥ 2 Rm such
that dimZ⇥ = m + 1, and for any ⌫ the vectors z

⌫

, z
⌫+1

, . . . , z
⌫+m

are linearly
independent.

13. Appendix

13.1. Lacunary sequences. A sequence {t
j

}, j = 1, 2, 3, . . . , of positive real
numbers is said to be lacunary if for some M > 0

t
j+1

t
j

> 1 +
1
M

8 j 2 N. (108)

In 1926 Khintchine proved that for any sequence satisfying (108) there exist
a real number ↵ and a positive number � such that

kt
n

↵k > � 8n 2 N.

This result was published in the paper [1] (Hilfssatz III). In the present survey
we have referred to this paper many times. The recent book of selected works
by Khintchine [16] also includes this paper. Lemma 2 in § 6.3 (p. 473) above is
a natural generalization of this one-dimensional result of Khintchine.

Here we note that Khintchine’s construction makes it possible to prove the exis-
tence of an absolute positive constant � and a real number ↵ such that

kt
n

↵k > �

(M log M)2
8n 2 N.

Half a century later, in 1975, Erdős [113] conjectured that for an arbitrary lacu-
nary sequence there exists a real number ↵ such that the fractional parts {↵t

j

},
j 2 N, are not dense in [0, 1]. A resolution of Erdős’ conjecture follows imme-
diately from Khintchine’s result cited above. But this result of Khintchine was
forgotten. Other resolutions of the conjecture were published by Pollington [114]
and de Mathan [115]. Quantitative improvements were due to Katznelson [116],
Akhunzhanov and Moshchevitin [117], and Dubickas [118]. The best known result
is due to Peres and Schlag [19], who proved that for some absolute positive constant
� > 0 and for any sequence {t

j

} under consideration there exists a real number ↵
such that

k↵t
j

k > �

M log M
8 j 2 N. (109)

They used an original construction involving a special version of Lovasz’ local
lemma.
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This paper of Peres and Schlag was followed by several papers by others applying
their method to various Diophantine problems (see [119]–[126]). For the problem
on lacunary sequences the best value of the constant � in (109) is apparently in the
paper [125] by Rochev.

The Peres–Schlag method [19] for constructing badly approximable numbers
(with respect to a lacunary sequence) has turned out to be useful in various problems
in Diophantine approximation theory. We shall mention some such problems below,
but first we make some comments concerning metrical results.

13.2. Some metrical results. First, we consider a one-dimensional approxima-
tion problem. We give a result of Cassels in [127]. Recall that an increasing
sequence of integers {t

n

}

1
n=1

is called a ⌃-sequence if

lim inf
N!1

1
N

X

n6N

µ
n

t
n

> 0,

where µ
n

denotes the number of fractions of the form j/t
n

with 0 < j < t
n

which
are not of the form i/t

q

with positive integers i and q < n. Examples of ⌃-sequences
are arbitrary lacunary sequences, the sequences nd (n = 1, 2, 3, . . . ) with a fixed
positive integer d, and the Furstenberg sequence (the definition will be given later).

Cassels’ theorem in [127] asserts that if {t
n

}

1
n=1

is a ⌃-sequence and if  (n)
is a function decreasing to zero such that the series

P1
n=1

 (n) diverges, then for
almost all ⇠

lim inf
n!+1

kt
n

⇠k( (n))�1 = 0.

Second, we state the divergence case of Khintchine’s theorem in [3] (for the problem
of simultaneous approximations only, in the form as it appears in Chap. III of [24]).
Suppose that a collection of positive-valued functions  

1

(q), . . . , 
n

(q) of the natural
number argument q is such that the function

 (q) =
n

Y

j=1

 
j

(q)

is non-increasing and the series
P

+1
q=1

 (q) diverges. Then for almost all vectors
⇥ = (✓

1

, . . . , ✓
n

) 2 Rn there exist infinitely many integers q such that

kq✓
j

k <  
j

(q), 1 6 j 6 n.

Third, we refer to a result due to Gallagher [128] (here we give not the general
result but a corollary) also dealing with the divergence case. This result states that
for almost all pairs of real numbers (⇠

1

, ⇠
2

)

lim inf
n!1

n log2 n · kn⇠
1

k kn⇠
2

k = 0.

13.3. Applications of the Peres–Schlag method. In this subsection we dis-
cuss some problems where the Peres–Schlag method gives non-trivial results on the
existence of badly approximable numbers.
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A. Approximations with subexponential sequences. Consider a sequence of
positive integers t

n

, n = 1, 2, 3, . . . , such that

t
n

⇣ exp(�n�), � > 0, 0 < � < 1. (110)

In [121] it is shown that for any sequence of real numbers ⌘
n

the set
n

⇠ 2 R : inf
n2N

kt
n

⇠ � ⌘
n

k · n1�� log n > 0
o

has full Hausdor↵ dimension 1. (More precisely, only the homogeneous case ⌘
n

= 0
for any n was considered in [121], but the proof for the general case follows the
proof for the particular case word for word.)

As an example we consider the Furstenberg sequence s
n

, n = 1, 2, 3, . . . , con-
sisting of integers of the form 2k

· 3m, k, m = 0, 1, 2, 3, . . . , arranged in increasing
order. For this sequence the condition (110) is satisfied with � = 1/2. Hence we
see that for any fixed sequence ⌘

n

the set
n

⇠ 2 R : inf
n2N

ks
n

⇠ � ⌘
n

k · n1�� log n > 0
o

has full Hausdor↵ dimension 1.
Furstenberg [129] (a simple proof is given by Boshernitzan [130]) proved that for

an irrational number ⇠ the fractional parts {2n

· 3m↵} are dense in [0, 1], and so

lim inf
n!1

ks
n

⇠k = 0.

There is a wonderful recent result due to Bourgain, Lindenstrauss, Michel, and
Vencatesh about the rate of convergence to zero of ks

n

↵k. It involves lower bounds
for an integer linear form in two logarithms of algebraic numbers.
B. Polynomial-like sequences. Consider a polynomial-like increasing sequence
t
n

such that
t
n

⇣ n� , � > 0.

In [122] it was proved that the set
n

⇠ 2 R : inf
n2N

kt
n

⇠ � ⌘
n

k · n log n > 0
o

has Hausdor↵ dimension > �/(1 + �).
This result gives a positive answer to a question of Schmidt in [132]. In the same

paper he asks a more di�cult question which is still open: does there exist a real
number ⇠ such that

inf
n2N

kn2⇠kn > 0 ?

Here we cite a result of Zaharescu [133]: for any irrational number ⇠ and any
positive "

lim inf
n!1

kn2⇠kn2/3�" = 0.

This result is the best known up to now.
Cassels’ theorem cited in § 13.2 shows that the sets constructed in A and B

above have zero Lebesgue measure. In [125] Rochev obtained a general theorem on
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approximations for linear forms that generalizes the results above on the existence
of badly approximable numbers.

In the present subsection we now discuss two multidimensional problems.
C. The Littlewood problem. The famous Littlewood conjecture states that for
any two real numbers ⇠

1

and ⇠
2

lim inf
n!1

n kn⇠
1

k kn⇠
2

k = 0.

By the way, the author would like to say the he became familiar with the Littlewood
problem when he was a student. It was S. A. Dovbysh who first told the author
about this conjecture long ago.

By the Peres–Schlag approach one can prove (see [124]) the existence of ⇠
1

and ⇠
2

such that
lim inf
n!1

n log2 n · kn⇠
1

k kn⇠
2

k > 0.

From Gallagher’s theorem cited at the end of § 13.2 it follows that the pairs ⇠
1

, ⇠
2

with such a property form a set of zero Lebesgue measure in R2.
D. BAD-conjecture. For ↵,� 2 [0, 1] with ↵ + � = 1 and for � 2 (0, 1/2) we
consider the set

BAD(↵,�; �) =
n

⇠ = (⇠
1

, ⇠
2

) 2 [0, 1]2 : inf
p2N

max{p↵kp⇠
1

k, p�kp⇠
2

k} > �
o

.

Schmidt conjectured in [63] that for any two pairs (↵
1

,�
1

), (↵
2

,�
2

) 2 [0, 1]2 with
↵

1

+ �
1

= ↵
2

+ �
2

= 1 the intersection

BAD(↵
1

,�
1

) \ BAD(↵
2

,�
2

)

is non-empty. This conjecture is dual to the Littlewood conjecture, and is now
known as the BAD-conjecture. It remained unsolved for a long time. Recently
Badziahin, Pollington, and Velani in the wonderful paper [134] obtained an elegant
solution of this problem. What is more, they proved that the intersection of any
finite (and under some additional assumptions countable) family of sets of the form
BAD(↵

k

,�
k

) has full Hausdor↵ dimension.
The Peres–Schlag method gives the following result. For any sequence of inho-

mogeneities ⌘ = {⌘
j

}

1
j=1

consider the set

BAD⇤
⌘

(↵,�; �) =
n

⇠ = (⇠
1

, ⇠
2

) 2 [0, 1]2 :

inf
p2N

max{(p log(p + 1))↵kp⇠
1

k, (p log(p + 1))�kp⇠
2

� ⌘
p

k} > �
o

.

It is clear that
BAD(↵,�; �) ✓ BAD⇤

0

(↵,�; �)

(here ⌘ = 0 means that all the ⌘
j

are equal to zero) and that since the series

1
X

p=1

1
p log(p + 1)



Khintchine’s singular Diophantine systems and their applications 503

diverges, for any sequence ⌘ the union

BAD⇤
⌘

(↵,�) =
[

�>0

BAD⇤
⌘

(↵,�; �)

is a set of zero Lebesgue measure.
In [123] it is proved that for ↵

1

,↵
2

,�
1

,�
2

2 [0, 1] with ↵
1

+ �
1

= ↵
2

+ �
2

= 1
and for 0 < � 6 2�20 the intersection

BAD⇤
0

(↵
1

,�
1

; �) \ BAD⇤
0

(↵
2

,�
2

; �) (111)

is non-empty. The proof of the fact that the sets

BAD⇤
⌘

1(↵
1

,�
1

; �) \ BAD⇤
⌘

2(↵
2

,�
2

; �)

are non-empty for any fixed sequences ⌘1 and ⌘2 follows the proof of (111) in [123]
word for word.

Bugeaud showed in the joint paper [126] that in all the applications of the
Peres–Schlag method which were considered above, the method constructs sets of
full Hausdor↵ dimension. To get such a result one should use the mass distribution
principle (see [135], Chap. V, or [136]). Moreover, in the paper [126] there are some
other applications of that method to Littlewood-type problems.

We do not presume to give here a detailed survey of papers and results related to
Littlewood-type problems. There are many such papers. We note only that there
are a large number of them dealing with the problems discussed above by means of
dynamical systems. We refer to the survey [58].

The proofs of all the results in this subsection relating to the Peres–Schlag
method are based on a certain application of a special form of Lovasz’ local lemma
(see [125]).

Lemma 9. Suppose that {A
n

}

N

n=1

is a system of events in a probability space
(⌦,F ,P). Let {x

n

}

N

n=1

be a collection of numbers in [0, 1]. Put B
0

= ⌦ and
B

n

=
T

n

m=1

Ac

m

(1 6 n 6 N ), where Ac

m

= ⌦ \ A
m

. Suppose that for any
n 2 {1, . . . , N} there exists an m = m(n) 2 {0, 1, . . . , n� 1} such that

P(A
n

\B
m

) 6 x
n

Y

m<k<n

(1� x
k

) · P(B
m

)

(if m = n� 1, take
Q

m<k<n

(1� x
k

) = 1). Then for 1 6 n 6 N

P(B
n

) > (1� x
n

)P(B
n�1

).

13.4. (↵,�)-games. We recall the definition of a Mazur–Banach–Schmidt (↵,�)-
game in the space Rd. Let ↵,� 2 (0, 1) and let S ✓ Rd be a set. The two players are
White and Black. First, Black picks a closed ball (in the sup-norm) B

1

of diameter
l(B

1

) = 2⇢. Then White picks a closed ball W
1

⇢ B
1

of diameter l(W
1

) = ↵l(B
1

).
Then Black picks a closed ball B

2

⇢ W
1

of diameter l(B
2

) = �l(W
1

), and so on. As
a result, we have a sequence of nested closed balls B

1

� W
1

� B
2

� W
2

� · · · with
diameters l(B

i

) = 2(↵�)i�1⇢ and l(W
i

) = 2↵(↵�)i�1⇢ (i = 1, 2, . . . ). Obviously,
the set

T1
i=1

B
i

=
T1

i=1

W
i

consists of just one point. If
T1

i=1

B
i

2 S, then we
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say that White has won the game. A set S is said to be (↵,�)-winning if White
can win independently of how Black plays. A set S is said to be ↵-winning if it is
(↵,�)-winning for all � 2 (0, 1). The winning dimension windim A of a set A ✓ Rd

is defined as the supremum of those ↵ for which the set A is ↵-winning. In the
case windim A > 1/2 we obviously have A = Rd. For 0 < ↵ 6 1/2 there exist
non-trivial ↵-winning sets. Schmidt [20], [24] proved a series of general theorems
about winning sets. Two of them are stated below.

Theorem 70. Let ↵ > 0. Then any ↵-winning set in Rd has Hausdor↵ dimen-
sion d.

Theorem 71. Let ↵ > 0. Then the intersection of a countable collection of
↵-winning sets is again an ↵-winning set.

Here are some examples of winning sets.
A. The following example is due to Schmidt [20].

Theorem 72. Let d = 1, and fix any integer q > 2. The set

N
q

= {x 2 R : 9C(x) > 0 with kqnxk > C(x) 8n 2 N}

of numbers which are not normal with respect to the natural number base q has
winning dimension 1/2.

B. For d = 1 consider a lacunary sequence of positive numbers t
j

(the definition is
in § 13.1). Generalizing Schmidt’s arguments, we easily see that the set

N = {x 2 R : 9C(x) > 0 with kt
n

xk > C(x) 8n 2 N}

has winning dimension 1/2.
C. For sequences with a sublacunary rate of growth the author proved the following
result in [137].

Theorem 73. Suppose that a sequence of numbers t
n

is such that

8 " > 0 9N
0

8n > N
0

:
t
n+1

t
n

> 1 +
1
n"

.

Then for any � > 0 the set

A
�

= {x 2 R : 9c(x) > 0 with kt
n

xk > c(x)/n� 8n 2 N}

is an ↵-winning set for any ↵ 2 (0, 1/2), and hence windim A
�

= 1/2.

D. We should say a few words about badly approximable systems of linear forms
in particular. A collection ⇥ = {✓i

j

, 1 6 i 6 m, 1 6 j 6 n} of real numbers is
said to be badly approximable if there exists a positive number � such that for the
corresponding system L

⇥

(x) = {L
j

(x), 1 6 j 6 n} of linear forms

max
16j6n

kL
j

(x)k > � ·

⇣

max
16i6m

|x
i

|

⌘�m/n

8x 2 Zm

\ {0}.

It is a well-known fact that badly approximable systems ⇥ exist and that for any
n, m the set of all badly approximable systems ⇥ has zero Lebesgue measure in Rnm

(for example, this follows from Khintchine’s metrical theorem cited in § 13.2).
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On the other hand, ⇥ is badly approximable if and only if the Jarńık function (20)
satisfies

lim inf
t!+1

tm/n 
⇥

(t) > 0.

Of course, a badly approximable system ⇥ forms a regular system (in the sense of
Khintchine’s terminology).

We state Schmidt’s theorem in [138].

Theorem 74. For any dimensions n and m the set of all badly approximable sys-
tems ⇥ in Rd with d = nm has winning dimension 1/2.

There is an enormous amount of literature devoted to badly approximable sys-
tems, and the author has simply not been able to put together a good survey on
this topic.
E. In concluding, we note that there are fairly many di↵erent papers devoted to
winning sets (see for example [51], [52], [56], [139]–[145]).
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