Комплексные поверхности,

лекция 11: Эллиптические операторы и сильный принцип максимума

Миша Вербицкий

НМУ/матфак ВШЭ, Москва

23 апреля 2012

Векторные поля и дифференциальные операторы

ОПРЕДЕЛЕНИЕ: Пусть R - кольцо над полем k. k-линейное отображение D из кольца R в R-модуль (например, в R) называется **дифференцированием**, если оно удовлетворяет правилу Лейбница: D(xy) = yD(x) + xD(y) Очевидно, любое векторное поле задает дифференцирование на кольце $C^{\infty}(M)$.

ЗАМЕЧАНИЕ: Дифференцирования кольца $C^{\infty}(M)$ кольца глад-ких функций это векторные поля на M. Это - одно из определений векторного поля.

ОПРЕДЕЛЕНИЕ: Пусть R - кольцо над полем k. Дифференциальный оператор порядка 0 — это отображение $R \stackrel{v}{\to} R$, которое R-линейно, то есть переводит $r \in R$ в v(1)r. Множество таких операторов обозначается $\mathrm{Diff}^0(R)$. Дифференциальный оператор порядка i>0 определяется индуктивно: $a \in \mathrm{Diff}^i(R)$, если для любого $v \in \mathrm{Diff}^0(R)$, коммутатор [a,v] лежит в $\mathrm{Diff}^{i-1}(R)$. Мы имеем цепочку вложений

$$\operatorname{Diff}^0(R) \subset \operatorname{Diff}^1(R) \subset \operatorname{Diff}^2(R) \subset \dots$$

Объединение всех $\mathsf{Diff}^i(R)$ называется множеством дифференциальных операторов.

Дифференциальные операторы на расслоениях

ОПРЕДЕЛЕНИЕ: Дифференциальные операторы на кольце $C^{\infty}M$ называются дифференциальными операторами на , и обозначаются $Diff^*(M)$.

ЗАМЕЧАНИЕ: Это определение равносильно обычному (whatever it is).

ЗАМЕЧАНИЕ: Аналогично определяются дифференциальные операторы из модуля M над кольцом R в модуль M' над R. Операторы нулевого порядка - R-линейные, операторы i-го порядка - такие, коммутатор которых с любым R-линейным эндоморфизмом M и M' дает дифференциальный оператор i-1-го порядка.

ЗАМЕЧАНИЕ: Напомню, что проективный конечно порожденный модуль над кольцом — это прямое слагаемое свободного модуля. Векторные расслоения на гладком многообразии можно рассматривать как $C^{\infty}M$ -модули, отождествляя расслоение с пространством его сечений. Дифференциальные операторы из одного расслоения в другое можно определить как дифференциальные операторы на соответствующих $C^{\infty}M$ -модулях.

Фильтрованные алгебры

ОПРЕДЕЛЕНИЕ: (Возрастающая) фильтрация на векторном пространстве V есть последовательность подпространств $V_0 \subset V_1 \subset V_2 \subset ...$ таких, что $\bigcup V_i = V$. Фильтрованная алгебра это алгебра A с фильтрацией $A_0 \subset A_1 \subset A_2 \subset ...$ такая, что $A_i \cdot A_j \subset A_{i+j}$.

ЗАМЕЧАНИЕ: Композиция дифференциальных операторов i-го и j-го порядка имеет порядок $\leqslant i+j$ (докажите это). Это задает фильтрацию

$$\operatorname{Diff}^0(R) \subset \operatorname{Diff}^1(R) \subset \operatorname{Diff}^2(R) \subset \dots$$

на кольце дифференциальных операторов над R.

УПРАЖНЕНИЕ: Пусть $D^i \in \mathsf{Diff}^i(R)$, $D^j \in \mathsf{Diff}^j(R)$ — дифференциальные операторы. Докажите, что их коммутатор $[D^i,D^j]$ лежит в $\mathsf{Diff}^{i+j-1}(R)$.

ОПРЕДЕЛЕНИЕ: Пусть $A = \bigcup_i A_i$ - ассоциативная алгебра с фильтрацией. Определим умножение на $\bigoplus_i A_i/A_{i-1}$ так, что произведение $a \mod A_{i-1}$ и $b \mod A_{j-1}$ дает $ab \mod A_{i+j-1}$. Такая алгебра называется присоединенной градуированной алгеброй фильтрованной алгебры A.

Алгебра символов

УПРАЖНЕНИЕ: Докажите, что присоединенная градуированная алгебра к алгебре дифференциальных операторов коммутативна.

ОПРЕДЕЛЕНИЕ: Эта алгебра называется **алгеброй символов диф**-ференциальных операторов.

TEOPEMA: $\mathrm{Diff}^i(M)/\mathrm{Diff}^{i-1}(M)$ изоморфно пространству сечений расслоения $\mathrm{Sym}^i\,TM$.

Наборосок доказательства: Для i=1, это утверждение очевидно из явного описания дифференциальных операторов первого порядка (это дифференцирования плюс $C^{\infty}M$ -линейные операторы, а дифференцирования — это и есть векторные поля). Для i>1, нужна индукция.

УПРАЖНЕНИЕ: Пусть $R = C^{\infty}M$. Докажите, что кольцо символов дифференциальных операторов на M изоморфно кольцу функций на T^*M , полиномиальных на всех слоях T^*_xM .

ОПРЕДЕЛЕНИЕ: Пусть $D \in \mathsf{Diff}^i(M)$ - дифференциальный оператор i-го порядка. Его **символ** это его образ в $\mathsf{Diff}^i(M)/\mathsf{Diff}^{i-1}(M) = \mathsf{Sym}^i TM$. Символ это функция на тотальном пространстве кокасательного расслоения T^*M , полиномиальная (и однородная степени i) на слоях T^*M .

Эллиптические операторы

ЗАМЕЧАНИЕ: Все рассуждения о дифференциальных операторах из $C^{\infty}M$ в себя можно повторить для дифференциальных операторов из расслоения в расслоение. Пространство $Diff^*(\mathcal{F},\mathcal{G})$ является $Diff^*(M)$ -модулем с фильтрацией, и **его присоединенный градуированный мо-дуль изоморфен** $Sym^*TM \otimes Hom_{C^{\infty}M}(\mathcal{F},\mathcal{G})$ (докажите это).

ОПРЕДЕЛЕНИЕ: Если $D: \mathcal{F} \to \mathcal{G}$ — дифференциальный оператор i-го порядка на векторных расслоениях, его **символ** — сечение векторного расслоения $\operatorname{Sym}^i TM \otimes \operatorname{Hom}(\mathcal{F},\mathcal{G})$. Мы будем рассматривать D как $\operatorname{Hom}(\mathcal{F},\mathcal{G})$ -значную функцию на T^*M , полиномиальную (и однородную степени i) на слоях T^*M .

ОПРЕДЕЛЕНИЕ: Пусть $D: \mathcal{F} \to \mathcal{G}$ — дифференциальный оператор i-го порядка на векторных расслоениях одинакового ранга. Рассмотрим проекцию $\pi: \operatorname{Tot}(T^*M) \to M$. D называется **эллиптическим**, если его символ задает изоморфизм $\pi^*\mathcal{F} \to \pi^*\mathcal{G}$ в каждой точке $\xi \in T^*M$, лежащей вне нулевого сечения T^*M .

Эллиптические операторы второго порядка на $C^{\infty}\mathbb{R}^n$

ПРИМЕР: Дифференциальный оператор второго порядка на $C^{\infty}\mathbb{R}^n$ записывается в виде

$$D(f)f = af + \sum_{i} b_{i} \frac{\partial f}{\partial x_{i}} + \sum_{i,j} c_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$$

где $a,\ b_i,\ c_{i,j}$ — гладкие функции, а $x_i,i=1,...,n$ — координаты. Тогда его символ задается функцией $\xi \to \sum_{i,j} c_{i,j} \xi_i \xi_j$, где $\xi=(\xi_1,...,\xi_n)\in T_x^*\mathbb{R}^n$. Этот оператор эллиптичен, если матрица $c_{i,j}$ положительно или отрицательно определена в каждой точке \mathbb{R}^n .

ЗАМЕЧАНИЕ: По конвенции, считается, что эллиптический оператор второго порядка есть оператор, у которого матрица $c_{i,j}$ положительно определена.

ОПРЕДЕЛЕНИЕ: Эллиптический оператор второго порядка называется униформно эллиптическим, если b_i ограничены в метрике, которая задается $c_{i,j}$ (для компактных многообразий это требование выполнено автоматически).

Сильный принцип максимума

TEOPEMA:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Пусть M — многообразие, не обязательно компактное, а D: $C^{\infty}M \to C^{\infty}M$ — униформно эллиптический оператор второго порядка, причем D(f)=0 для любой функции f=const. Пусть u — функция такая, что $D(u)\geqslant 0$. Предположим, что u имеет локальный максимум в какой-то точке M. Тогда u — константа.

Доказательство, для случая D(u) > 0: В координатах, оператор D записывается так:

$$Du = \sum_{i,j} A^{ij} u_{ij} + \sum_{i} B^{i} u_{i},$$

где u_{ij} — матрица вторых производных (гессиан) функции $u,\ u_i=\frac{\partial u}{\partial x_i},$ а A^{ij} — функция со значениями в положительно определенных матрицах. В точке z максимума u, первые производные u зануляются, матрица вторых производных неположительно определена, и поэтому $Du|_z=\sum_{i,j}A^{ij}u_{ij}|_z\leqslant 0$, что противоречит Du>0. Поэтому такая функция u не может иметь максимума.

Слабый принцип максимума

Сильный принцип максимума — трудная теорема. Сначала я докажу слабый принцип максимума, а потом выведу из него сильный.

ТЕОРЕМА: (Слабый принцип максимума)

Пусть $D: C^{\infty}M \to C^{\infty}M$ — эллиптический оператор второго порядка. причем D(f)=0 для функции f=const. Рассмотрим область $\Omega\subset M$, замыкание которой компактно. Тогда любое решение неравенства $D(u)\geqslant 0$ достигает максимума $\sup_{\Omega} u$ на границе $\partial\Omega$.

ДОКАЗАТЕЛЬСТВО: Пусть z — точка, где u достигает максимума, а x_i — координаты в окрестности $U \ni z$, $U \cong \mathbb{R}^n$. Отождествим z с $0 \in \mathbb{R}^n$. Выберем область $\Omega \in \mathbb{R}^n$, которая содержится в шаре $B_r(0)$ радиуса r < 1. Достаточно доказать, что u(z) = u(v) для какой-то точки z на $\partial \Omega$.

Шаг 1: Если мы добавим к u решение φ неравенства $D\varphi > 0$, максимум $u + \varphi$ будет всегда достигаться на границе Ω , в силу сильного принципа максимума для Du > 0.

Слабый принцип максимума (продолжение)

Шаг 1: Если мы добавим к u решение φ неравенства $D\varphi > 0$, максимум $u + \varphi$ будет всегда достигаться на границе Ω , в силу сильного принципа максимума для Du > 0.

Шаг 2: Нам нужна функция φ , определенная на Ω , и такая, что $D\varphi > 0$, то есть $B^i \varphi_i < A^{ij} \varphi_{ij}$ везде на Ω . В качестве φ можно выбрать функцию εe^{cx_1} , где c выбрано, чтобы выполнялось $A^{1,1}c > |b^1|$. Тогда $D(\varphi) = A^{1,1}c^2e^{cx_1} + b^1ce^{cx_1} > 0$.

Шаг 3: Поскольку максимум $u+\varepsilon e^{cx_1}$ достигается на границе $\partial\Omega$ для любого $\varepsilon>0$, мы получаем, что $\sup_{\Omega}u$ достигается на границе $\partial\Omega$.

10

Лемма Хопфа

ЛЕММА: (лемма Хопфа) Пусть

$$D(u) = \sum_{i,j} A^{ij} u_{ij} + \sum_{i} B^{i} u_{i}$$

эллиптический оператор на замкнутом шаре $B\subset \mathbb{R}^n$, а u — гладкая в B функция, такая, что $D(u)\geqslant 0$. Предположим, что u достигает максимума на точке z_0 границы ∂B , причем внутри шара $u< u(z_0)$. Тогда производная u по радиальному вектору в точке z положительна: Lie $_{\vec{r}}u>0$.

Доказательство: Предположим, для упрощения обозначений, что шар B единичный, $u|_{B}\leqslant 0$, и $u(z_{0})=0$.

Шаг 1: Рассмотрим неотрицательную на B функцию $v \in C^{\infty}B$, заданную формулой $v(x)=e^{-\alpha|x|^2}-e^{-\alpha}$, где $\alpha>0$ — вещественное число. Тогда

$$D(v)|_{x} = \alpha^{2} e^{-\alpha r(x)^{2}} \sum_{i} A^{ij} x_{i} x_{j} + e^{-\alpha r(x)^{2}} (\alpha \zeta + \xi),$$

где $\zeta, \xi \in \mathbb{C}^{\infty}B$ — ограниченные функции на B, не зависящие от α . Поэтому, **для достаточно больших** α , **имеет место** D(v) > 0 **в области** $\Omega = B \setminus B'$, где $B' \subset B$ — шар с центром в 0 и радиусом $r_0 < 1$.

Лемма Хопфа (продолжение)

Шаг 1: Рассмотрим неотрицательную на B функцию $v\in C^\infty B$, заданную формулой $v(x)=e^{-\alpha|x|^2}-e^{-\alpha},$ где $\alpha>0$ — вещественное число. Тогда

$$D(v)|_{x} = \alpha^{2} e^{-\alpha r(x)^{2}} \sum_{i} A^{ij} x_{i} x_{j} + e^{-\alpha r(x)^{2}} (\alpha \zeta + \xi),$$

где $\zeta, \xi \in \mathbb{C}^{\infty} B$ — ограниченные функции на B, не зависящие от α . Поэтому, **для достаточно больших** α , **имеет место** D(v) > 0 **в области** $\Omega = B \setminus B'$, где $B' \subset B$ — шар с центром в 0 и радиусом $r_0 < 1$.

Шаг 2: Для достаточно маленького $\varepsilon>0$, имеем $u+\varepsilon v<0$ в B', потому что $u<\delta<0$ в B'. Поскольку v=0 на границе B, из слабого принципа максимума следует, что $u+\varepsilon v<0$ в Ω , и достигает максимума в z_0 . Значит, производная $\mathrm{Lie}_{\vec{r}}(u+\varepsilon v)|_{z_0}\geqslant 0$.

Шаг 3: Вычислением проверяется $\operatorname{Lie}_{\vec{r}} v|_{z_0} < 0$, что дает $\operatorname{Lie}_{\vec{r}} u|_{z_0} > 0$.

Сильный принцип максимума (доказательство)

TEOPEMA:

(strong maximum principle for second order elliptic equations; Eberhard Hopf, 1927) Пусть M — многообразие, не обязательно компактное, а D: $C^{\infty}M \to C^{\infty}M$ — униформно эллиптический оператор второго порядка, причем D(f) = 0 для любой функции f = const. Пусть u — функция такая, что $D(u) \geqslant 0$. Предположим, что u имеет максимум в какой-то точке M. Тогда u — константа.

Доказательство. Шаг 1: Пусть локальный максимум функции u достигается в точке $z \in M$, а $Z := \{m \in M \mid u(m) = u(z)\}$. Если u не постоянно, то всегда существует шар, внутренность которого не пересекает Z, а граница пересекает. Выберем этот шар таким образом, что u < u(z) внутри B.

Шаг 2: Поскольку производная u в z_0 ненулевая (по лемме Хопфа), это никак не может быть локальный максимум: противоречие.

Метрики Годушона

ОПРЕДЕЛЕНИЕ: Пусть ω - эрмитова форма комплексного эрмитова многообразия M, $\dim_{\mathbb{C}} M = n$. Метрика на M называется метрикой Годушона, если $\partial \overline{\partial}(\omega^{n-1}) = 0$.

ТЕОРЕМА: (П. Годушон, 1977) Пусть (M, ω) – компактное, комплексное, эрмитово n-мерное многообразие. Тогда существует единственная (с точностью до постоянного множителя) положительная функция $\psi \in C^{\infty}M$ такая, что $\psi\omega$ - метрика Годушона.

Доказательство теоремы Годушона следует из сильного принципа максимума и теоремы об индексе для эллиптических операторов (в следующей лекции будет).