Нормирования, пополнения и глобальные поля

Задача 1° (поля функций на кривых). а) Опишите все нормирования на конечном расширении $K/\mathbb{F}_q(t)$.

- b) Покажите, что всякое пополнение K изоморфно полю рядов Лорана $\mathbb{F}_{q^r}((s))$
- с) Докажите, формулу произведения для K: $\prod_v |x|_v = 1$, где произведение берётся по всем нормализованным нормированиям $|\ |_v$ поля K.

Задача 2°. Докажите, что поле K с неархимедовым нормированием локально компактно (т. е. существует компактная окрестность 0) тогда и только тогда, когда K — полно, нормирование дискретно, а поле вычетов $k = \mathcal{O}_K/\mathfrak{m}_K$ конечно.

Задача 3 (нормализованные нормирования и мера Хаара). а) Покажите, что на аддитивной группе K^+ локально компактного поля с неархимедовым нормированием, существует и единственна мера μ , инвариантная относительно сдвигов (т. е. $\mu(\alpha+U)=\mu(U)$ для любого $\alpha\in K$ и измеримого подмножества $U\subset K$), удовлетворяющая условию $\mu(\mathcal{O}_K)=1$.

b) Покажите, что для меры μ из предыдущего пункта и нормализованного нормирования $\| \ \|$ на K выполнено $\mu(\alpha + \beta \mathcal{O}_K) = \| \beta \|$.

Подсказка: удобно решать одновременно оба пункта.

Задача 4 (ряды в \mathbb{C}_p). a°) Покажите, что степенной ряд $\sum_{k=1}^\infty a_k x^k, a_k, x \in \mathbb{C}_p$ сходится при $|x|_p < r$ и расходится при $|x|_p > r$, где $\frac{1}{r} = \limsup |a_n|_p^{1/n}$. Что может происходить со сходимостью на границе $|x|_p = r$?

- $b^\circ)$ Убедитесь, что ряд $\log(1+x)=\sum_{k=1}^\infty rac{(-1)^{k+1}x^k}{k}$ сходится при $|x|_p<1$ и расходится при $|x|_p\geq 1.$
- c°) Покажите, что радиус сходимости ряда $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ равен $p^{-1/(p-1)}$. Сходится ли этот ряд на границе круга сходимости?
- $d^{\circ})$ Проверьте, что в \mathbb{C}_p имеют место равенства:

$$\log((1+x)(1+y)) = \log(1+x) + \log(1+y), \ \exp(x+y) = \exp(x)\exp(y),$$
$$\exp(\log(1+x)) = 1+x, \ \log(\exp(x)) = x.$$

Выведите отсюда, что exp и log — взаимно обратные изоморфизмы некоторой окрестности 0 в аддитивной группе \mathbb{C}_p^{\times} и некоторой окрестности 1 в мультипликативной группе \mathbb{C}_p^{\times} .

е) Исследуйте сходимость ряда $\sum_{k=0}^{\infty} \frac{a(a-1)...(a-k+1)}{k!} x^k$.

Задача 5 (насколько \mathbb{C}_p больше $\bar{\mathbb{Q}}_p$). а) Приведите пример элемента из \mathbb{C}_p , не лежащего в $\bar{\mathbb{Q}}_p$.

Подсказка: используйте примитивные корни из единицы возрастающей степени.

- b^*) Докажите, что \mathbb{C}_p нельзя представить в виде алгебраического расширения поля, полученного присоединением счётного числа элементов поля \mathbb{C}_p к $\bar{\mathbb{Q}}_p$ (т. е. \mathbb{C}_p имеет несчётную степень трансцендентности над $\bar{\mathbb{Q}}_p$).
- $c^*)$ Будет ли счётной степень трансцендентности \mathbb{C}_p над p-адическим пополнением максимального неразветвлённого расширения $\mathbb{Q}_p^{\mathrm{nr}}$?

Задача 6° (многоугольник Ньютона). Найдите многоугольник Ньютона следующих многочленов. Что можно сказать об их корнях?

- a) $1 X + pX^2$; b) $1 X^3/p^2$; c) $1 + X^2 + pX^4 + p^3X^6$;
- d) $\sum_{i=1}^{p} iX^{i-1}$; e) $(1-X)(1-pX)(1-p^3X)$; f) $\prod_{i=1}^{p^2} (1-iX)$.
- g) Найдите два приведённых многочлена степени 3 в $\mathbb{Q}_5[X]$ с одинаковым многоугольником Ньютона, таких что один из них неприводим, а другой нет.
- h) Найдите неприводимый приведённый многочлен в $\mathbb{Z}[X]$ степени 6, который разлагается в $\mathbb{Q}_5[X]$ в произведение трёх неприводимых многочленов степени 2.
- і) Пусть $f(X) \in 1 + X\mathbb{Z}_p[X]$ многочлен, многоугольник Ньютона которого состоит из одного отрезка, соединяющего точки (0,0) и (n,m). Покажите, что f(X) неприводим в \mathbb{Z}_p , если n и m взаимно просты. Выведите отсюда критерий неприводимости Эйзенштейна.
- ј) Всякий ли неприводимый многочлен $f(X) \in 1 + X\mathbb{Z}_p[X]$, имеет многоугольник Ньютона того же типа, что в предыдущем пункте?
- Задача 7 (приложения леммы Краснера). a°) Пусть p такое простое число, что -1 не имеет квадратного корня в \mathbb{Q}_p . Найдите ϵ , для которого $\mathbb{Q}_p(\sqrt{-a}) = \mathbb{Q}_p(\sqrt{-1})$ при любом $a \in |a-1|_p < \epsilon$.
- b°) Для какого ϵ из неравенства $|a-1|_p < \epsilon$ следует совпадение $\mathbb{Q}_p(\sqrt{a})$ с $\mathbb{Q}_p(\sqrt{p})$? Подсказка: отдельно исследуйте случай p=2.
- c°) Определите все неизоморфные квадратичные расширения поля \mathbb{Q}_p . Подсказка: в случае p=2 их 7 штук.
- d) Определите все различные кубические расширения поля \mathbb{Q}_7 .
- **Задача 8.** Убедитесь, что для локально компактного поля K и его расширения L имеет место равенство $\mathcal{O}_L = \mathcal{O}_K[a]$ для некоторого $a \in L$.

Подсказка: в качестве а можно взять $\Pi + b$, где $\Pi - y$ ниформизующая $L, b \in \mathcal{O}_L - n$ однятие порождающего элемента \bar{b} для поля вычетов $l = k[\bar{b}]$.

- Задача 9 (слабо разветвлённые расширения). Пусть K локально-компактное поле с неархимедовым нормированием, $k = \mathcal{O}_K/\mathfrak{m}_K$ поле вычетов, $p = \operatorname{char} k$. Напомним, что конечное расширение L/K называется слабо разветвлённым, если $p \nmid e(L/K)$ (как обычно, e(L/K) индекс ветвления, f(L/K) = [l:k] степень расширения поля вычетов).
- а) Пусть L/K произвольное конечное сепарабельное расширение K. Покажите, что в L есть такое подполе L_1 , что всякое слабо разветвлённое расширение K'/K, $K' \subset L$, является подполем L_1 и обратно. Убедитесь, что $[L:L_1]$ является степенью p.
- b) Убедитесь, что L_1 есть неподвижное поле первой группы ветвления $G_1 = \{ \sigma \in \operatorname{Gal}(L/K) \mid |\sigma(\Pi) \Pi| < |\Pi| \}.$
- с) Пусть L/K нормальное вполне и слабо разветвлённое расширение степени e. Докажите, что K содержит первообразный корень степени e из единицы и существует элемент $c \in K^{\times}$, являющийся униформизующей для K, для которого $L = K(c^{1/e})$.

Подсказка: используйте лемму Гензеля, чтобы показать наличие корней из единицы, и теорию Куммера, для того, чтобы убедиться, что $L = K(c^{1/e})$.

- d) Обратно, если $p \nmid e$ и K содержит первообразный корень степени e из единицы, и, если c униформизующая K, то $L = K(c^{1/e})$ нормально, вполне и слабо разветвлено над K и имеет степень e.
- е) Покажите, что группа Галуа максимального слабо разветвлённого расширения K над его максимальным неразветвлённым расширением $\mathrm{Gal}(K^{\mathrm{tr}}/K^{\mathrm{nr}})\cong\prod_{l}\mathbb{Z}_{l}.$
- $f^*)$ В условиях предыдущего пункта изучите структуру $\operatorname{Gal}(K^{\operatorname{tr}}/K).$

Задача 10. Пусть K — конечное расширение \mathbb{Q}_p , m — натуральное число, а $(K^{\times})^m$ множество m-х степеней элементов из K^{\times} .

- а) Предположим, что $|m|_p = 1$ и K не содержит корней степени m из 1, отличных от 1. Докажите, что индекс мультипликативной подгруппы $(K^{\times})^m$ в K^{\times} равен m.
- b) Опустим предположения предыдущего пункта. Докажите, что индекс $(K^{\times}:(K^{\times})^m)=\frac{m\omega}{|m|_p}$, где ω число корней из 1 степени m, содержащихся в K.

Задача 11*. Пусть L/K — конечное неразветвлённое расширение локально компактных полей.

- а) Покажите, что отображение следа сюръективно переводит \mathcal{O}_L в \mathcal{O}_K , а отображение нормы сюръективно переводит \mathcal{O}_L^{\times} в \mathcal{O}_K^{\times} .
- b) Покажите, что, если отображение нормы сюръективно переводит \mathcal{O}_L^{\times} в \mathcal{O}_K^{\times} , то расширение неразветвлено.

Задача 12. а) Пусть K — глобальное поле, \mathfrak{a} — собственный идеал в \mathcal{O}_K . Покажите, что естественное отображение $SL_n(\mathcal{O}_K) \longrightarrow SL_n(\mathcal{O}_K/\mathfrak{a})$ является сюръекцией. Подсказка: теорема об аппроксимации Вам поможет.

- b) Проделайте то же самое для группы GL_n .
- Задача 13 (теорема Гельфанда—Торнхейма). а) Пусть F нормированное поле, содержащее \mathbb{C} , при этом нормирование $|\ |$ на F продолжает обычное нормирование на \mathbb{C} . Пусть $x_0 \in F \setminus \mathbb{C}$. Положим $f(z) = (x_0 z)^{-1} : \mathbb{C} \to F$. Убедитесь, что функция $z \mapsto |f(z)|$ непрерывна, ограничена и достигает наибольшего значения M на некотором замкнутом множестве $D \subset \mathbb{C}$.
- b) В обозначениях предыдущего пункта предположим, что $0 \in D$. Пусть ω примитивный корень степени n из $1, r \in \mathbb{R}, |r/x_0| < 1$. Положим $S(n) = \frac{1}{n} \sum_{k=1}^n \frac{1}{x_0 \omega^k r}$. Убедитесь, что $\lim_{n \to \infty} |S(n)| = |1/x_0| = M$.
- с) Докажите, что для любого комплексного числа λ такого, что $|\lambda|=1$, имеет место $\left|\frac{1}{x_0-\lambda r}\right|=M$. Выведите отсюда, что $F=\mathbb{C}$.

 Π одсказка: рассмотрите маленький интервал, содержащий λ , и корни из 1, лежащие в нём.

- d) Покажите, что любое поле F с apxимедовым нормированием изоморфно подполю $\mathbb C$ так, что при изоморфизме нормирование на F переходит в стандартное нормирование на $\mathbb C$.
- Задача 14 (вычисление групп Галуа). Пусть K числовое поле, $f(x) \in \mathcal{O}_K[x]$ приведённый многочлен без кратных корней, $\deg f = n, \, G$ группа Галуа поля разложения f(x).
- a°) Предположим, что G имеет в точности s орбит как группа перестановок n-элементного множества корней f(x), а порядки орбит равны n_1, \ldots, n_s . Тогда имеется разложение $f(x) = f_1(x) \ldots f_s(x)$, где $f_i(x) \in K[x]$ неприводимые многочлены степени n_i .
- b°) Пусть \mathfrak{p} простой идеал \mathcal{O}_K и $f(x) \equiv f_1(x) \dots f_s(x) \mod \mathfrak{p}$, где $f_i(x)$ различные неприводимые многочлены степени n_i с коэффициентами из $k = \mathcal{O}_K/\mathfrak{p}$. Тогда в G найдется перестановка σ , являющаяся произведением непересекающихся циклов длин n_i .
- c°) Каков аналог утверждения предыдущего пункта для вещественных нормирований?
- d°) Вычислите группу Галуа многочлена $x^{5}-x-1$.
- е) Пусть H подгруппа S_n , действующая транзитивно на множестве корней и содержащая (n-1)-цикл и транспозицию. Тогда $H=S_n$.
- f) Используя предыдущую задачу, найдите для всех n многочлен степени n над \mathbb{Q} , имеющий группу Галуа S_n .

Этот метод вычисления групп Галуа применим к произвольным многочленам и является самым эффективным на практике. Дополнительными ингредиентами, которые обеспечивают работу метода, являются теорема плотности Чеботарёва, гарантирующая существование простого, элемент Фробениуса которого имеет любой заданный циклический

тип из G, а также характеризацию подгрупп S_n (при небольших n) в терминах классов сопряжённости.

Задача 15 (разложение многочленов на множители).

а) Пусть K — поле дискретного нормирования, $f(x), g(x), h(x) \in \mathcal{O}_K[x]$ — приведённые многочлены. Предположим, что $\delta = |f(x) - g(x)h(x)| < |\mathrm{Res}(g,h)|^2 = r^2$ (норма многочлена — максимум модулей его коэффициентов, Res — результант двух многочленов). Докажите, что найдутся такие $G(x), H(x) \in \mathcal{O}_K[x]$, что |G(x) - g(x)| < r, |H(x) - h(x)| < r и f(x) = G(x)H(x).

Подсказка: последовательно строим всё лучшие приближения к f(x), записывая $g(x) = g^*(x) + \gamma(x)$, $h(x) = h^*(x) + \chi(x)$, где $\deg(\gamma) = \deg g - 1$, $\deg(\chi) = \deg h - 1$. Определитель матрицы левой части уравнения $g\chi + h\gamma = f - gh$ на коэффициенты $\gamma(x)$ и $\chi(x)$ совпадает с результантом $\operatorname{Res}(g,h)$. Отсюда находим γ и χ , при этом $|\chi(x)|, |\gamma(x)| \leq \frac{\delta}{r}$. Теперь $|f(x) - g^*(x)h^*(x)| < \delta$ и $|\operatorname{Res}(g^*,h^*)| = |\operatorname{Res}(g,h)|$.

b) Проверьте, что утверждение предыдущего упражнения верно, если заменить условие $\delta < r^2$ на $\delta < \mathrm{Disc}(f)$.

 $\Pi odc \kappa a s \kappa a$: $\mathrm{Disc}(gh) = \mathrm{Disc}(g)\mathrm{Disc}(h)\mathrm{Res}(g,h)^2$

Задача 16 (вычисление колец целых).

- а) Пусть $K = \mathbb{Q}(\alpha)$ конечное расширение, $\alpha \in \mathcal{O}_K$. Покажите, что, если минимальный многочлен α является многочленом Эйзенштейна (как многочлен над \mathbb{Q}_p , в частности, он неприводим над \mathbb{Q}_p), то $p \nmid [\mathcal{O}_K \colon \mathbb{Z}[\alpha]]$.
- b) Найдите кольца целых расширений $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(\sqrt[4]{2})$, $\mathbb{Q}(\sqrt[5]{2})$.
- с) Покажите, что расширение $\mathbb{Q}(\zeta_{p^k})$, полученное присоединением примитивного корня степени p^k из единицы, неразветвлено вне p.

 Π одсказка: посмотрите на производную $x^{p^k} - 1 \mod p$.

d) Убедитесь, что расширение $\mathbb{Q}(\zeta_{p^k})$ вполне разветвлено в p. Используя это, покажите, что $\mathcal{O}_{\mathbb{Q}(\zeta_{n^k})}=\mathbb{Z}[\zeta_{p^k}].$

Подсказка: элементы $\frac{\zeta^i-1}{\zeta^j-1}$ обратимы в \mathcal{O}_K (здесь $\zeta=\zeta_{p^k}$).

- е) Найдите кольцо целых циклотомического (т.е. кругового) поля $\mathbb{Q}(\zeta_m)$ для произвольного m.
- f) Посчитайте дискриминант кругового поля.
- g) Как устроено разложение на простые в $\mathbb{Q}(\zeta_m)$?

Циклотомическое расширение $\mathbb{Q}(\zeta_m)$ является важнейшим примером в алгебраической теории чисел, многие общие результаты (теорема Дирихле о единицах, разложение на простые, теория полей классов) доказывались для случая этого поля, а затем переносились (если получалось) на более сложные поля. С теоремы Кронекера—Вебера о том, что всякое абелево расширение \mathbb{Q} вкладывается в $\mathbb{Q}(\zeta_m)$ начинается теория полей классов.