Когомологии

- Задача 8.0. а) Вычислите по определению симплициальные когомологии тетраэдра.
- б) Приведите явный пример замкнутой неточной 2-формы на $\mathbb{R}^3 \setminus \{0\}$.
- **Задача 8.1.** а) Если k поле, то $H^{\bullet}(X;k) \cong \text{Hom}(H_{\bullet}(X);k)$.
- 6) $H^{\bullet}(\mathbb{R}P^2; \mathbb{Z}) \ncong \operatorname{Hom}(H_{\bullet}(\mathbb{R}P^2); \mathbb{Z}).$
- в) Функтор $\text{Hom}(H_{\bullet}; \mathbb{Z})$ не удовлевторяет аксиомам теории когомологий.
- Задача 8.2. Пользуясь тем, что умножение в когомологиях многообразия соответствует пересечению циклов, докажите, что
- а) $H^{\bullet}(\mathbb{T}^2; \mathbb{Z}) \cong \Lambda[\xi_1, \xi_2]$ б) ...и найдите кольцо когомологий сферы с q ручками;
- в) $H^{\bullet}(\mathbb{R}P^n; \mathbb{Z}/2) \cong (\mathbb{Z}/2)[a]/(a^{n+1}) \ (\deg a = 1), \ H^{\bullet}(\mathbb{C}P^n; \mathbb{Z}) \cong \mathbb{Z}[x]/(x^{n+1}) \ (\deg x = 2).$ (Можно для начала пользоваться этой задачей дальше без доказательства.)
- **Задача 8.3.** Если m > n, то любое отображение $\mathbb{R}P^m \to \mathbb{R}P^n$ индуцирует тривиальное отображение а) в когомологиях с коэффициентами в $\mathbb{Z}/2$; б) на π_1 .
- **Задача 8.4.** Если n четно, то не существует диффеоморфизма $\mathbb{C}P^n$ на себя, обращающего ориентацию.
- **Задача 8.5.** а) Комплексная гиперповерхность в $\mathbb{C}P^n$, заданная однородным полиномиальным уравнением степени d реализует класс $dx \in H^2(\mathbb{C}P^n;\mathbb{Z})$, где x класс гиперплоскости.
- б) Если система из n полиномиальных уравнений степеней d_1, \ldots, d_n на n неизвестных имеет конечное число решений, то этих решений не более $d_1 \cdot \ldots \cdot d_n$.
- Задача 8.6. $H^{\bullet}(\mathbb{R}P^3;\mathbb{Z}) \cong H^{\bullet}(\mathbb{R}P^2 \vee S^3;\mathbb{Z})$, но $H^{\bullet}(\mathbb{R}P^3;\mathbb{Z}/2) \not\cong H^{\bullet}(\mathbb{R}P^2 \vee S^3;\mathbb{Z}/2)$.
- ightharpoonup Пространство X с отмеченной точкой $e \in X$ и "умножением" $\mu \colon X \times X \to X$, т. ч. $\mu(e,-) \sim \mu(-,e) \sim \mathrm{Id}_X$, называется H-пространством.
 - **Задача 8.7.** а) Если $\mathbb{R}P^{n-1}$ является H-пространством, то μ индуцирует в $H^1(-;\mathbb{Z}/2)$ отображение $a\mapsto a_1+a_2$.
 - б) Выведите из предыдущего пункта, что если на \mathbb{R}^n существует структура \mathbb{R} -алгебры с делением (возможно неассоциативной), то $n=2^k$.
 - (На самом деле, это возможно только при n = 1, 2, 4 или 8.)