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1 Results

1.1 A full classification of non-Abelian Painlevé systems with abelian parameters

All Painlevé equations are Hamiltonian and can be written as a coupled system of first-order ordinary differ-
ential equations [Malmquist, 1922], [Okamoto, 1980]. These systems are non-autonomous and, therefore, the
Hamiltonians are not conserved quantities. Since well-known properties of integrable autonomous systems are
trivially generalized to the non-commutative case [Mikhailov and Sokolov, 2000], it is convenient to consider
auxiliary autonomous systems related to the Painlevé systems. Recently, using this approach, we have con-
structed two classes (Hamiltonian systems [Bobrova and Sokolov, 2023a] and systems with Okamoto integral
[Bobrova and Sokolov, 2023b]) of non-abelian Painlevé type systems that are closed under the limiting transi-
tions and some group-actions. These two criteria are useful to discover some known and several new examples
of non-abelian Painlevé systems. However, they do not detect all known examples of non-abelian P4 and P2

systems (see [Bobrova and Sokolov, 2022] and [Adler and Sokolov, 2021]) found by the matrix generalization of
the Painlevé-Kovalevskaya test [Balandin and Sokolov, 1998]. Due to this fact, we turn to the search for such
a criterion that will select, in particular, all known non-abelian Painlevé systems with abelian parameters. It
turns out that the symmetry approach is useful in this classification problem which was done in the paper
[Bobrova and Sokolov, 2023c].

We have found a complete list of the Painlevé-6 type non-abelian systems whose auxiliary autonomous systems
possess a commuting symmetry. Due to the complexity of the calculations, we first classify homogeneous systems,
which are the leading parts of autonomous systems of the P6 type. For each leading part, finding the remaining
coefficients is not too difficult. The resulting list contains 35 different systems, including 19 systems from
[Bobrova and Sokolov, 2023a], [Bobrova and Sokolov, 2023b]. One of the reasons for the appearance of a large
number of non-abelian systems of the same type is the presence of transformations that preserve the integrability.
Proceeding to other cases, we have also found all non-abelian P5 – P1 systems admitting auxiliary autonomous
systems with a symmetry.

The obtained set of systems is closed under the degeneracy and some group-actions and has an isomonodromic
representation. As a result, the considered criterion allows us to find all integrable non-abelian Painlevé systems
with abelian parameters.

1



1.2 Non-Abelian monodromy surfaces

The Painlevé equations are connected with a system of scalar differential equations [Fuchs, 1907], [Garnier, 1912]
integrable in the sense of the Frobenius theorem. In the paper [Jimbo and Miwa, 1981b], it was established that
the Painlevé equations can be linearized. This fact is connected with monodromy preserving deformations related
to vector bundles of rank 2. Due to the isomonodromic property, the space of solutions of the Painlevé equations
can be parameterized by the monodromy data. Namely, each of the equations can be associated with the zero-
locus of an affine cubic that is usually called the monodromy surface (e.g., [Van Der Put and Saito, 2009]). We are
interested in non-abelian generalizations of the well-known monodromy surfaces related to different linearizations
of the non-commutative analogs for the second Painlevé equation, obtained in [Adler and Sokolov, 2021] and
labeled by P0

2, P
1
2, P

2
2.

In the commutative case, the P2 equation has two monodromy surfaces of the FN-type and JM-types. The
corresponding linearizations are related to each other by a generalized Laplace transformation [Suleimanov, 2008],
[Joshi et al., 2009]. We have extended this correspondence to the non-commutative case and, as a result, pre-
sented for each of the non-abelian P2 systems linearizations of the FN and JM types.

To proceed to the non-abelian monodromy surfaces, we need to determine the monodromy data consisting of
the topological monodromy, the formal monodromy, and the Stokes matrices. This data is defined by a formal
solution near a singular point. Due to this, we have studied such a formal solution and have derived a state-
ment, that is a non-abelian generalization of Proposition 2.2 in [Jimbo and Miwa, 1981a] and a generalization
of Proposition 4.1 in [Bertola et al., 2018].

Regarding the case of the P0
2 system, the monodromy data is isomonodromic and, thus, the corresponding

monodromy surfaces were derived [Bobrova, 2023]. In the commutative setting, they coincide with the well-
known. Note also that in the commutative case these surfaces are equivalent by a simple scaling that cannot
be generalized to the non-abelian setting. Regarding the remaining systems, P1

2 and P2
2, the monodromy data

are not isomonodromic and, therefore, we cannot parameterize their solutions by the Stokes multipliers. But, in
fact, one can ask about a gauge-transformation that makes the monodromy data isomonodromic. As far as we
know, such a transformation does not exist.

1.3 Some non-Abelian discrete Painlevé equations

We are interested in an extension to the non-commutative case of the following scheme

discrete Toda equations
[Hone et al., 2017]−→ Somos-N equations

[Hone and Inoue, 2014]−→ discrete Painlevé equations.

For this purpose, by using a non-abelian Jacobi identity for the quasideterminants [Gelfand and Retakh, 1991],
we have derived a non-commutative two-dimensional discrete Toda lattice, the 2ddTL [Bobrova et al., 2023],
differ from [Nimmo, 2006]. Our analog possesses Lax pairs of different types and solutions in terms of quaside-
terminants. Note that its form is more suitable for the further reductions to (1+1)-dimensional and one-
dimensional systems. In particular, plane-wave reductions of the 2ddTL and its scalar Lax pair lead to a
non-commutative analog for the autonomous Somos-N like sequences and the corresponding isospectral pairs.
Note that commutative Somos-N like sequences are associated with qP1 and qP2 equations and their hierarchies
[Hone and Inoue, 2014]. In order to generalize this connection to the non-abelian case, one needs to get a non-
autonomous analog for Somos-N like sequences. We suggest a method which in the commutative case is different
from those in [Hone and Inoue, 2014]. This allows us to obtain a non-abelian non-autonomous Somos-N like
equation and, as a result, non-commutative analogs for the q-Painlevé-1 and q-Painlevé-2 equations and their
hierarchies. Note that the problem of finding the corresponding Lax pairs for these non-autonomous systems
remains open even in the commutative case.

2 Papers

2.1 Published

1. Bobrova I., Sokolov V. On classification of non-abelian Painlevé type systems, Journal of Geometry and
Physics, 191: 104885, arXiv:2303.10347

2. Bobrova I. Different linearizations of non-abelian second Painlevé systems and related monodromy surfaces,
Journal of Mathematical Physics, 64(10): 101702, arXiv:2302.10694
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3. Bobrova I., Sokolov V. Classification of Hamiltonian non-abelian Painlevé type systems, Journal of Non-
linear Mathematical Physics, 30: 646–662, arXiv:2209.00258

4. Bobrova I., Sokolov V. Non-abelian Painlevé systems with generalized Okamoto integral, in The Diverse
World of PDEs: Algebraic and Cohomological Aspects, volume 789 of Contemporary Mathematics, pages
41–76, American Mathematical Society, arXiv:2206.10580

2.2 Submitted

1. Bobrova I., Retakh V., Rubtsov V., Sharygin G. Non-Abelian discrete Toda chains and related lattices,
Physica D: Nonlinear Phenomena (under review), arXiv:2311.11124

3 Scientific conferences and schools

3.1 Scientific conferences

1. Forum des jeunes mathématicien-nes. Analyse. Géométrie. Application, Bruxelles, November 22 - 24

talk Non-Abelian Painlevé equations and related monodromy surfaces

3.2 Schools

1. Atelier on Higher Structures in Differential Geometry , Lyon, Institut Camille Jordan

4 Work in scientific centers and international groups

1. Invited Researcher, IHES (2 dec 2022 – 28 feb 2023)

2. Junior Research Fellow, International Laboratory of Cluster Geometry, Faculty of Mathematics, HSE
University (10 mar 2023 – 31 oct 2023)

5 Teaching

5.1 Courses 2022/2023 (spring)

1. Seminars on Fourier Analysis, 2d year of Bachelor’s programme “Mathematica”, Faculty of Mathematics,
HSE University (only in January)
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linearity, 35(12):6528. arXiv:2107.11680, arXiv:2110.12159.
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equations and the Painlevé equations. In Annales de l’Institut Fourier, volume 59, pages 2611–2667.

4

https://doi.org/10.1090/conm/789
https://arxiv.org/abs/2206.10580
https://doi.org/10.1016/j.geomphys.2023.104885
https://arxiv.org/abs/2303.10347
https://iopscience.iop.org/article/10.1088/1361--6544/ac9bc2
https://arxiv.org/abs/2107.11680
https://arxiv.org/abs/2110.12159
https://link.springer.com/article/10.1007/BF01449199
http://www.numdam.org/item/?id=ASENS_1912_3_29__1_0
https://link.springer.com/article/10.1007/BF01079588
https://iopscience.iop.org/article/10.1088/1751--8113/47/47/474007/meta
https://arxiv.org/abs/1911.03320
https://www.emis.de/journals/SIGMA/2017/057/
https://arxiv.org/abs/1705.01094
https://www.sciencedirect.com/science/article/abs/pii/0167278981900130
https://www.sciencedirect.com/science/article/abs/pii/016727898190021X
https://doi.org/10.1088/1751--8113/42/5/055208
https://arxiv.org/abs/0806.0271v1
https://link.springer.com/article/10.1007/s002200050810
https://arxiv.org/abs/solv-int/9908004
https://iopscience.iop.org/article/10.1088/0305--4470/39/18/019/meta
https://doi.org/10.3792/pjaa.56.264
https://doi.org/10.1007/s11232--008--0106--8
https://doi.org/10.5802/aif.2502

	Results
	Papers
	Scientific conferences and schools
	Work in scientific centers and international groups
	Teaching
	References

